blob: ef752be7cb0f0a2af79ae2861dd3dbdc57ea06eb [file] [log] [blame]
// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: google/protobuf/timestamp.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code
using pb = global::Google.Protobuf;
using pbc = global::Google.Protobuf.Collections;
using pbr = global::Google.Protobuf.Reflection;
using scg = global::System.Collections.Generic;
namespace Google.Protobuf.WellKnownTypes {
/// <summary>Holder for reflection information generated from google/protobuf/timestamp.proto</summary>
public static partial class TimestampReflection {
#region Descriptor
/// <summary>File descriptor for google/protobuf/timestamp.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}
private static pbr::FileDescriptor descriptor;
static TimestampReflection() {
byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"Ch9nb29nbGUvcHJvdG9idWYvdGltZXN0YW1wLnByb3RvEg9nb29nbGUucHJv",
"dG9idWYiKwoJVGltZXN0YW1wEg8KB3NlY29uZHMYASABKAMSDQoFbmFub3MY",
"AiABKAVCfgoTY29tLmdvb2dsZS5wcm90b2J1ZkIOVGltZXN0YW1wUHJvdG9Q",
"AVorZ2l0aHViLmNvbS9nb2xhbmcvcHJvdG9idWYvcHR5cGVzL3RpbWVzdGFt",
"cPgBAaICA0dQQqoCHkdvb2dsZS5Qcm90b2J1Zi5XZWxsS25vd25UeXBlc2IG",
"cHJvdG8z"));
descriptor = pbr::FileDescriptor.FromGeneratedCode(descriptorData,
new pbr::FileDescriptor[] { },
new pbr::GeneratedClrTypeInfo(null, new pbr::GeneratedClrTypeInfo[] {
new pbr::GeneratedClrTypeInfo(typeof(global::Google.Protobuf.WellKnownTypes.Timestamp), global::Google.Protobuf.WellKnownTypes.Timestamp.Parser, new[]{ "Seconds", "Nanos" }, null, null, null)
}));
}
#endregion
}
#region Messages
/// <summary>
/// A Timestamp represents a point in time independent of any time zone
/// or calendar, represented as seconds and fractions of seconds at
/// nanosecond resolution in UTC Epoch time. It is encoded using the
/// Proleptic Gregorian Calendar which extends the Gregorian calendar
/// backwards to year one. It is encoded assuming all minutes are 60
/// seconds long, i.e. leap seconds are "smeared" so that no leap second
/// table is needed for interpretation. Range is from
/// 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z.
/// By restricting to that range, we ensure that we can convert to
/// and from RFC 3339 date strings.
/// See [https://www.ietf.org/rfc/rfc3339.txt](https://www.ietf.org/rfc/rfc3339.txt).
///
/// # Examples
///
/// Example 1: Compute Timestamp from POSIX `time()`.
///
/// Timestamp timestamp;
/// timestamp.set_seconds(time(NULL));
/// timestamp.set_nanos(0);
///
/// Example 2: Compute Timestamp from POSIX `gettimeofday()`.
///
/// struct timeval tv;
/// gettimeofday(&amp;tv, NULL);
///
/// Timestamp timestamp;
/// timestamp.set_seconds(tv.tv_sec);
/// timestamp.set_nanos(tv.tv_usec * 1000);
///
/// Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`.
///
/// FILETIME ft;
/// GetSystemTimeAsFileTime(&amp;ft);
/// UINT64 ticks = (((UINT64)ft.dwHighDateTime) &lt;&lt; 32) | ft.dwLowDateTime;
///
/// // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
/// // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
/// Timestamp timestamp;
/// timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
/// timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
///
/// Example 4: Compute Timestamp from Java `System.currentTimeMillis()`.
///
/// long millis = System.currentTimeMillis();
///
/// Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
/// .setNanos((int) ((millis % 1000) * 1000000)).build();
///
/// Example 5: Compute Timestamp from current time in Python.
///
/// timestamp = Timestamp()
/// timestamp.GetCurrentTime()
///
/// # JSON Mapping
///
/// In JSON format, the Timestamp type is encoded as a string in the
/// [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) format. That is, the
/// format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z"
/// where {year} is always expressed using four digits while {month}, {day},
/// {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional
/// seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution),
/// are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone
/// is required. A proto3 JSON serializer should always use UTC (as indicated by
/// "Z") when printing the Timestamp type and a proto3 JSON parser should be
/// able to accept both UTC and other timezones (as indicated by an offset).
///
/// For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past
/// 01:30 UTC on January 15, 2017.
///
/// In JavaScript, one can convert a Date object to this format using the
/// standard [toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString]
/// method. In Python, a standard `datetime.datetime` object can be converted
/// to this format using [`strftime`](https://docs.python.org/2/library/time.html#time.strftime)
/// with the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one
/// can use the Joda Time's [`ISODateTimeFormat.dateTime()`](
/// http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime--
/// ) to obtain a formatter capable of generating timestamps in this format.
/// </summary>
public sealed partial class Timestamp : pb::IMessage<Timestamp> {
private static readonly pb::MessageParser<Timestamp> _parser = new pb::MessageParser<Timestamp>(() => new Timestamp());
private pb::UnknownFieldSet _unknownFields;
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public static pb::MessageParser<Timestamp> Parser { get { return _parser; } }
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public static pbr::MessageDescriptor Descriptor {
get { return global::Google.Protobuf.WellKnownTypes.TimestampReflection.Descriptor.MessageTypes[0]; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
pbr::MessageDescriptor pb::IMessage.Descriptor {
get { return Descriptor; }
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public Timestamp() {
OnConstruction();
}
partial void OnConstruction();
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public Timestamp(Timestamp other) : this() {
seconds_ = other.seconds_;
nanos_ = other.nanos_;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public Timestamp Clone() {
return new Timestamp(this);
}
/// <summary>Field number for the "seconds" field.</summary>
public const int SecondsFieldNumber = 1;
private long seconds_;
/// <summary>
/// Represents seconds of UTC time since Unix epoch
/// 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to
/// 9999-12-31T23:59:59Z inclusive.
/// </summary>
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public long Seconds {
get { return seconds_; }
set {
seconds_ = value;
}
}
/// <summary>Field number for the "nanos" field.</summary>
public const int NanosFieldNumber = 2;
private int nanos_;
/// <summary>
/// Non-negative fractions of a second at nanosecond resolution. Negative
/// second values with fractions must still have non-negative nanos values
/// that count forward in time. Must be from 0 to 999,999,999
/// inclusive.
/// </summary>
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public int Nanos {
get { return nanos_; }
set {
nanos_ = value;
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public override bool Equals(object other) {
return Equals(other as Timestamp);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public bool Equals(Timestamp other) {
if (ReferenceEquals(other, null)) {
return false;
}
if (ReferenceEquals(other, this)) {
return true;
}
if (Seconds != other.Seconds) return false;
if (Nanos != other.Nanos) return false;
return Equals(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public override int GetHashCode() {
int hash = 1;
if (Seconds != 0L) hash ^= Seconds.GetHashCode();
if (Nanos != 0) hash ^= Nanos.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}
return hash;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public override string ToString() {
return pb::JsonFormatter.ToDiagnosticString(this);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public void WriteTo(pb::CodedOutputStream output) {
if (Seconds != 0L) {
output.WriteRawTag(8);
output.WriteInt64(Seconds);
}
if (Nanos != 0) {
output.WriteRawTag(16);
output.WriteInt32(Nanos);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public int CalculateSize() {
int size = 0;
if (Seconds != 0L) {
size += 1 + pb::CodedOutputStream.ComputeInt64Size(Seconds);
}
if (Nanos != 0) {
size += 1 + pb::CodedOutputStream.ComputeInt32Size(Nanos);
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}
return size;
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public void MergeFrom(Timestamp other) {
if (other == null) {
return;
}
if (other.Seconds != 0L) {
Seconds = other.Seconds;
}
if (other.Nanos != 0) {
Nanos = other.Nanos;
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public void MergeFrom(pb::CodedInputStream input) {
uint tag;
while ((tag = input.ReadTag()) != 0) {
switch(tag) {
default:
_unknownFields = pb::UnknownFieldSet.MergeFieldFrom(_unknownFields, input);
break;
case 8: {
Seconds = input.ReadInt64();
break;
}
case 16: {
Nanos = input.ReadInt32();
break;
}
}
}
}
}
#endregion
}
#endregion Designer generated code