blob: de13dfa8909a8aae705723d7d080f3a6d0dce7c0 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "protobuf.h"
#include "utf8.h"
/* stringsink *****************************************************************/
typedef struct {
upb_byteshandler handler;
upb_bytessink sink;
char *ptr;
size_t len, size;
} stringsink;
static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) {
stringsink *sink = _sink;
sink->len = 0;
return sink;
}
static size_t stringsink_string(void *_sink, const void *hd, const char *ptr,
size_t len, const upb_bufhandle *handle) {
stringsink *sink = _sink;
size_t new_size = sink->size;
UPB_UNUSED(hd);
UPB_UNUSED(handle);
while (sink->len + len > new_size) {
new_size *= 2;
}
if (new_size != sink->size) {
sink->ptr = realloc(sink->ptr, new_size);
sink->size = new_size;
}
memcpy(sink->ptr + sink->len, ptr, len);
sink->len += len;
return len;
}
void stringsink_init(stringsink *sink) {
upb_byteshandler_init(&sink->handler);
upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL);
upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL);
upb_bytessink_reset(&sink->sink, &sink->handler, sink);
sink->size = 32;
sink->ptr = malloc(sink->size);
sink->len = 0;
}
void stringsink_uninit(stringsink *sink) { free(sink->ptr); }
/* stackenv *****************************************************************/
// Stack-allocated context during an encode/decode operation. Contains the upb
// environment and its stack-based allocator, an initial buffer for allocations
// to avoid malloc() when possible, and a template for PHP exception messages
// if any error occurs.
#define STACK_ENV_STACKBYTES 4096
typedef struct {
upb_env env;
const char *php_error_template;
char allocbuf[STACK_ENV_STACKBYTES];
} stackenv;
static void stackenv_init(stackenv* se, const char* errmsg);
static void stackenv_uninit(stackenv* se);
// Callback invoked by upb if any error occurs during parsing or serialization.
static bool env_error_func(void* ud, const upb_status* status) {
char err_msg[100] = "";
stackenv* se = ud;
// Free the env -- zend_error will longjmp up the stack past the
// encode/decode function so it would not otherwise have been freed.
stackenv_uninit(se);
// TODO(teboring): have a way to verify that this is actually a parse error,
// instead of just throwing "parse error" unconditionally.
sprintf(err_msg, se->php_error_template, upb_status_errmsg(status));
TSRMLS_FETCH();
zend_throw_exception(NULL, err_msg, 0 TSRMLS_CC);
// Never reached.
return false;
}
static void stackenv_init(stackenv* se, const char* errmsg) {
se->php_error_template = errmsg;
upb_env_init2(&se->env, se->allocbuf, sizeof(se->allocbuf), NULL);
upb_env_seterrorfunc(&se->env, env_error_func, se);
}
static void stackenv_uninit(stackenv* se) {
upb_env_uninit(&se->env);
}
// -----------------------------------------------------------------------------
// Parsing.
// -----------------------------------------------------------------------------
#define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs)
// Creates a handlerdata that simply contains the offset for this field.
static const void* newhandlerdata(upb_handlers* h, uint32_t ofs) {
size_t* hd_ofs = (size_t*)malloc(sizeof(size_t));
*hd_ofs = ofs;
upb_handlers_addcleanup(h, hd_ofs, free);
return hd_ofs;
}
typedef size_t (*encodeunknown_handlerfunc)(void* _sink, const void* hd,
const char* ptr, size_t len,
const upb_bufhandle* handle);
typedef struct {
encodeunknown_handlerfunc handler;
} unknownfields_handlerdata_t;
// Creates a handlerdata for unknown fields.
static const void *newunknownfieldshandlerdata(upb_handlers* h) {
unknownfields_handlerdata_t* hd =
(unknownfields_handlerdata_t*)malloc(sizeof(unknownfields_handlerdata_t));
hd->handler = stringsink_string;
upb_handlers_addcleanup(h, hd, free);
return hd;
}
typedef struct {
size_t ofs;
const upb_msgdef *md;
} submsg_handlerdata_t;
// Creates a handlerdata that contains offset and submessage type information.
static const void *newsubmsghandlerdata(upb_handlers* h, uint32_t ofs,
const upb_fielddef* f) {
submsg_handlerdata_t* hd =
(submsg_handlerdata_t*)malloc(sizeof(submsg_handlerdata_t));
hd->ofs = ofs;
hd->md = upb_fielddef_msgsubdef(f);
upb_handlers_addcleanup(h, hd, free);
return hd;
}
typedef struct {
size_t ofs; // union data slot
size_t case_ofs; // oneof_case field
int property_ofs; // properties table cache
uint32_t oneof_case_num; // oneof-case number to place in oneof_case field
const upb_msgdef *md; // msgdef, for oneof submessage handler
const upb_msgdef *parent_md; // msgdef, for parent submessage
} oneof_handlerdata_t;
static const void *newoneofhandlerdata(upb_handlers *h,
uint32_t ofs,
uint32_t case_ofs,
int property_ofs,
const upb_msgdef *m,
const upb_fielddef *f) {
oneof_handlerdata_t* hd =
(oneof_handlerdata_t*)malloc(sizeof(oneof_handlerdata_t));
hd->ofs = ofs;
hd->case_ofs = case_ofs;
hd->property_ofs = property_ofs;
hd->parent_md = m;
// We reuse the field tag number as a oneof union discriminant tag. Note that
// we don't expose these numbers to the user, so the only requirement is that
// we have some unique ID for each union case/possibility. The field tag
// numbers are already present and are easy to use so there's no reason to
// create a separate ID space. In addition, using the field tag number here
// lets us easily look up the field in the oneof accessor.
hd->oneof_case_num = upb_fielddef_number(f);
if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE) {
hd->md = upb_fielddef_msgsubdef(f);
} else {
hd->md = NULL;
}
upb_handlers_addcleanup(h, hd, free);
return hd;
}
// A handler that starts a repeated field. Gets the Repeated*Field instance for
// this field (such an instance always exists even in an empty message).
static void *startseq_handler(void* closure, const void* hd) {
MessageHeader* msg = closure;
const size_t *ofs = hd;
return CACHED_PTR_TO_ZVAL_PTR(DEREF(message_data(msg), *ofs, CACHED_VALUE*));
}
// Handlers that append primitive values to a repeated field.
#define DEFINE_APPEND_HANDLER(type, ctype) \
static bool append##type##_handler(void* closure, const void* hd, \
ctype val) { \
zval* array = (zval*)closure; \
TSRMLS_FETCH(); \
RepeatedField* intern = UNBOX(RepeatedField, array); \
repeated_field_push_native(intern, &val); \
return true; \
}
DEFINE_APPEND_HANDLER(bool, bool)
DEFINE_APPEND_HANDLER(int32, int32_t)
DEFINE_APPEND_HANDLER(uint32, uint32_t)
DEFINE_APPEND_HANDLER(float, float)
DEFINE_APPEND_HANDLER(int64, int64_t)
DEFINE_APPEND_HANDLER(uint64, uint64_t)
DEFINE_APPEND_HANDLER(double, double)
// Appends a string to a repeated field.
static void* appendstr_handler(void *closure,
const void *hd,
size_t size_hint) {
zval* array = (zval*)closure;
TSRMLS_FETCH();
RepeatedField* intern = UNBOX(RepeatedField, array);
#if PHP_MAJOR_VERSION < 7
zval* str;
MAKE_STD_ZVAL(str);
PHP_PROTO_ZVAL_STRING(str, "", 1);
repeated_field_push_native(intern, &str);
return (void*)str;
#else
zend_string* str = zend_string_init("", 0, 1);
repeated_field_push_native(intern, &str);
return intern;
#endif
}
// Appends a 'bytes' string to a repeated field.
static void* appendbytes_handler(void *closure,
const void *hd,
size_t size_hint) {
zval* array = (zval*)closure;
TSRMLS_FETCH();
RepeatedField* intern = UNBOX(RepeatedField, array);
#if PHP_MAJOR_VERSION < 7
zval* str;
MAKE_STD_ZVAL(str);
PHP_PROTO_ZVAL_STRING(str, "", 1);
repeated_field_push_native(intern, &str);
return (void*)str;
#else
zend_string* str = zend_string_init("", 0, 1);
repeated_field_push_native(intern, &str);
return intern;
#endif
}
// Handlers that append primitive values to a repeated field.
#define DEFINE_SINGULAR_HANDLER(type, ctype) \
static bool type##_handler(void* closure, const void* hd, \
ctype val) { \
MessageHeader* msg = (MessageHeader*)closure; \
const size_t *ofs = hd; \
DEREF(message_data(msg), *ofs, ctype) = val; \
return true; \
}
DEFINE_SINGULAR_HANDLER(bool, bool)
DEFINE_SINGULAR_HANDLER(int32, int32_t)
DEFINE_SINGULAR_HANDLER(uint32, uint32_t)
DEFINE_SINGULAR_HANDLER(float, float)
DEFINE_SINGULAR_HANDLER(int64, int64_t)
DEFINE_SINGULAR_HANDLER(uint64, uint64_t)
DEFINE_SINGULAR_HANDLER(double, double)
#undef DEFINE_SINGULAR_HANDLER
#if PHP_MAJOR_VERSION < 7
static void *empty_php_string(zval** value_ptr) {
SEPARATE_ZVAL_IF_NOT_REF(value_ptr);
if (Z_TYPE_PP(value_ptr) == IS_STRING &&
!IS_INTERNED(Z_STRVAL_PP(value_ptr))) {
FREE(Z_STRVAL_PP(value_ptr));
}
ZVAL_EMPTY_STRING(*value_ptr);
return (void*)(*value_ptr);
}
#else
static void *empty_php_string(zval* value_ptr) {
if (Z_TYPE_P(value_ptr) == IS_STRING) {
zend_string_release(Z_STR_P(value_ptr));
}
ZVAL_EMPTY_STRING(value_ptr);
return value_ptr;
}
#endif
// Sets a non-repeated string field in a message.
static void* str_handler(void *closure,
const void *hd,
size_t size_hint) {
MessageHeader* msg = closure;
const size_t *ofs = hd;
return empty_php_string(DEREF(message_data(msg), *ofs, CACHED_VALUE*));
}
// Sets a non-repeated 'bytes' field in a message.
static void* bytes_handler(void *closure,
const void *hd,
size_t size_hint) {
MessageHeader* msg = closure;
const size_t *ofs = hd;
return empty_php_string(DEREF(message_data(msg), *ofs, CACHED_VALUE*));
}
static size_t stringdata_handler(void* closure, const void* hd,
const char* str, size_t len,
const upb_bufhandle* handle) {
zval* php_str = (zval*)closure;
#if PHP_MAJOR_VERSION < 7
// Oneof string/bytes fields may have NULL initial value, which doesn't need
// to be freed.
if (Z_TYPE_P(php_str) == IS_STRING && !IS_INTERNED(Z_STRVAL_P(php_str))) {
FREE(Z_STRVAL_P(php_str));
}
ZVAL_STRINGL(php_str, str, len, 1);
#else
if (Z_TYPE_P(php_str) == IS_STRING) {
zend_string_release(Z_STR_P(php_str));
}
ZVAL_NEW_STR(php_str, zend_string_init(str, len, 0));
#endif
return len;
}
#if PHP_MAJOR_VERSION >= 7
static size_t zendstringdata_handler(void* closure, const void* hd,
const char* str, size_t len,
const upb_bufhandle* handle) {
RepeatedField* intern = (RepeatedField*)closure;
unsigned char memory[NATIVE_SLOT_MAX_SIZE];
memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
*(zend_string**)memory = zend_string_init(str, len, 0);
HashTable *ht = PHP_PROTO_HASH_OF(intern->array);
int index = zend_hash_num_elements(ht) - 1;
php_proto_zend_hash_index_update_mem(
ht, index, memory, sizeof(zend_string*), NULL);
return len;
}
#endif
// Appends a submessage to a repeated field.
static void *appendsubmsg_handler(void *closure, const void *hd) {
zval* array = (zval*)closure;
TSRMLS_FETCH();
RepeatedField* intern = UNBOX(RepeatedField, array);
const submsg_handlerdata_t *submsgdata = hd;
Descriptor* subdesc =
UNBOX_HASHTABLE_VALUE(Descriptor, get_def_obj((void*)submsgdata->md));
zend_class_entry* subklass = subdesc->klass;
MessageHeader* submsg;
#if PHP_MAJOR_VERSION < 7
zval* val = NULL;
MAKE_STD_ZVAL(val);
ZVAL_OBJ(val, subklass->create_object(subklass TSRMLS_CC));
repeated_field_push_native(intern, &val);
submsg = UNBOX(MessageHeader, val);
#else
zend_object* obj = subklass->create_object(subklass TSRMLS_CC);
repeated_field_push_native(intern, &obj);
submsg = (MessageHeader*)((char*)obj - XtOffsetOf(MessageHeader, std));
#endif
custom_data_init(subklass, submsg PHP_PROTO_TSRMLS_CC);
return submsg;
}
// Sets a non-repeated submessage field in a message.
static void *submsg_handler(void *closure, const void *hd) {
MessageHeader* msg = closure;
const submsg_handlerdata_t* submsgdata = hd;
TSRMLS_FETCH();
Descriptor* subdesc =
UNBOX_HASHTABLE_VALUE(Descriptor, get_def_obj((void*)submsgdata->md));
zend_class_entry* subklass = subdesc->klass;
zval* submsg_php;
MessageHeader* submsg;
if (Z_TYPE_P(CACHED_PTR_TO_ZVAL_PTR(DEREF(message_data(msg), submsgdata->ofs,
CACHED_VALUE*))) == IS_NULL) {
#if PHP_MAJOR_VERSION < 7
zval* val = NULL;
MAKE_STD_ZVAL(val);
ZVAL_OBJ(val, subklass->create_object(subklass TSRMLS_CC));
MessageHeader* intern = UNBOX(MessageHeader, val);
custom_data_init(subklass, intern PHP_PROTO_TSRMLS_CC);
php_proto_zval_ptr_dtor(*DEREF(message_data(msg), submsgdata->ofs, zval**));
*DEREF(message_data(msg), submsgdata->ofs, zval**) = val;
#else
zend_object* obj = subklass->create_object(subklass TSRMLS_CC);
ZVAL_OBJ(DEREF(message_data(msg), submsgdata->ofs, zval*), obj);
MessageHeader* intern = UNBOX_HASHTABLE_VALUE(MessageHeader, obj);
custom_data_init(subklass, intern PHP_PROTO_TSRMLS_CC);
#endif
}
submsg_php = CACHED_PTR_TO_ZVAL_PTR(
DEREF(message_data(msg), submsgdata->ofs, CACHED_VALUE*));
submsg = UNBOX(MessageHeader, submsg_php);
return submsg;
}
// Handler data for startmap/endmap handlers.
typedef struct {
size_t ofs;
upb_fieldtype_t key_field_type;
upb_fieldtype_t value_field_type;
// We know that we can hold this reference because the handlerdata has the
// same lifetime as the upb_handlers struct, and the upb_handlers struct holds
// a reference to the upb_msgdef, which in turn has references to its subdefs.
const upb_def* value_field_subdef;
} map_handlerdata_t;
// Temporary frame for map parsing: at the beginning of a map entry message, a
// submsg handler allocates a frame to hold (i) a reference to the Map object
// into which this message will be inserted and (ii) storage slots to
// temporarily hold the key and value for this map entry until the end of the
// submessage. When the submessage ends, another handler is called to insert the
// value into the map.
typedef struct {
char key_storage[NATIVE_SLOT_MAX_SIZE];
char value_storage[NATIVE_SLOT_MAX_SIZE];
} map_parse_frame_data_t;
PHP_PROTO_WRAP_OBJECT_START(map_parse_frame_t)
map_parse_frame_data_t* data; // Place needs to be consistent with
// MessageHeader.
zval* map;
// In php7, we cannot allocate zval dynamically. So we need to add zval here
// to help decoding.
zval key_zval;
zval value_zval;
PHP_PROTO_WRAP_OBJECT_END
typedef struct map_parse_frame_t map_parse_frame_t;
static void map_slot_init(void* memory, upb_fieldtype_t type, zval* cache) {
switch (type) {
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
#if PHP_MAJOR_VERSION < 7
// Store zval** in memory in order to be consistent with the layout of
// singular fields.
zval** holder = ALLOC(zval*);
*(zval***)memory = holder;
zval* tmp;
MAKE_STD_ZVAL(tmp);
PHP_PROTO_ZVAL_STRINGL(tmp, "", 0, 1);
*holder = tmp;
#else
*(zval**)memory = cache;
PHP_PROTO_ZVAL_STRINGL(*(zval**)memory, "", 0, 1);
#endif
break;
}
case UPB_TYPE_MESSAGE: {
#if PHP_MAJOR_VERSION < 7
zval** holder = ALLOC(zval*);
zval* tmp;
MAKE_STD_ZVAL(tmp);
ZVAL_NULL(tmp);
*holder = tmp;
*(zval***)memory = holder;
#else
*(zval**)memory = cache;
ZVAL_NULL(*(zval**)memory);
#endif
break;
}
default:
native_slot_init(type, memory, NULL);
}
}
static void map_slot_uninit(void* memory, upb_fieldtype_t type) {
switch (type) {
case UPB_TYPE_MESSAGE:
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
#if PHP_MAJOR_VERSION < 7
zval** holder = *(zval***)memory;
zval_ptr_dtor(holder);
FREE(holder);
#else
php_proto_zval_ptr_dtor(*(zval**)memory);
#endif
break;
}
default:
break;
}
}
static void map_slot_key(upb_fieldtype_t type, const void* from,
const char** keyval,
size_t* length) {
if (type == UPB_TYPE_STRING) {
#if PHP_MAJOR_VERSION < 7
zval* key_php = **(zval***)from;
#else
zval* key_php = *(zval**)from;
#endif
*keyval = Z_STRVAL_P(key_php);
*length = Z_STRLEN_P(key_php);
} else {
*keyval = from;
*length = native_slot_size(type);
}
}
static void map_slot_value(upb_fieldtype_t type, const void* from,
upb_value* v) {
size_t len;
void* to = upb_value_memory(v);
#ifndef NDEBUG
v->ctype = UPB_CTYPE_UINT64;
#endif
memset(to, 0, native_slot_size(type));
switch (type) {
#if PHP_MAJOR_VERSION < 7
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
case UPB_TYPE_MESSAGE: {
*(zval**)to = **(zval***)from;
Z_ADDREF_PP((zval**)to);
break;
}
#else
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
*(zend_string**)to = Z_STR_P(*(zval**)from);
zend_string_addref(*(zend_string**)to);
break;
case UPB_TYPE_MESSAGE:
*(zend_object**)to = Z_OBJ_P(*(zval**)from);
GC_ADDREF(*(zend_object**)to);
break;
#endif
default:
len = native_slot_size(type);
memcpy(to, from, len);
}
}
// Handler to begin a map entry: allocates a temporary frame. This is the
// 'startsubmsg' handler on the msgdef that contains the map field.
static void *startmapentry_handler(void *closure, const void *hd) {
MessageHeader* msg = closure;
const map_handlerdata_t* mapdata = hd;
zval* map = CACHED_PTR_TO_ZVAL_PTR(
DEREF(message_data(msg), mapdata->ofs, CACHED_VALUE*));
map_parse_frame_t* frame = ALLOC(map_parse_frame_t);
frame->data = ALLOC(map_parse_frame_data_t);
frame->map = map;
map_slot_init(&frame->data->key_storage, mapdata->key_field_type,
&frame->key_zval);
map_slot_init(&frame->data->value_storage, mapdata->value_field_type,
&frame->value_zval);
return frame;
}
// Handler to end a map entry: inserts the value defined during the message into
// the map. This is the 'endmsg' handler on the map entry msgdef.
static bool endmap_handler(void* closure, const void* hd, upb_status* s) {
map_parse_frame_t* frame = closure;
const map_handlerdata_t* mapdata = hd;
TSRMLS_FETCH();
Map *map = UNBOX(Map, frame->map);
const char* keyval = NULL;
upb_value v;
size_t length;
map_slot_key(map->key_type, &frame->data->key_storage, &keyval, &length);
map_slot_value(map->value_type, &frame->data->value_storage, &v);
map_index_set(map, keyval, length, v);
map_slot_uninit(&frame->data->key_storage, mapdata->key_field_type);
map_slot_uninit(&frame->data->value_storage, mapdata->value_field_type);
FREE(frame->data);
FREE(frame);
return true;
}
// Allocates a new map_handlerdata_t given the map entry message definition. If
// the offset of the field within the parent message is also given, that is
// added to the handler data as well. Note that this is called *twice* per map
// field: once in the parent message handler setup when setting the startsubmsg
// handler and once in the map entry message handler setup when setting the
// key/value and endmsg handlers. The reason is that there is no easy way to
// pass the handlerdata down to the sub-message handler setup.
static map_handlerdata_t* new_map_handlerdata(
size_t ofs,
const upb_msgdef* mapentry_def,
Descriptor* desc) {
const upb_fielddef* key_field;
const upb_fielddef* value_field;
// TODO(teboring): Use emalloc and efree.
map_handlerdata_t* hd =
(map_handlerdata_t*)malloc(sizeof(map_handlerdata_t));
hd->ofs = ofs;
key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD);
assert(key_field != NULL);
hd->key_field_type = upb_fielddef_type(key_field);
value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD);
assert(value_field != NULL);
hd->value_field_type = upb_fielddef_type(value_field);
hd->value_field_subdef = upb_fielddef_subdef(value_field);
return hd;
}
// Handlers that set primitive values in oneofs.
#define DEFINE_ONEOF_HANDLER(type, ctype) \
static bool oneof##type##_handler(void* closure, const void* hd, \
ctype val) { \
const oneof_handlerdata_t* oneofdata = hd; \
MessageHeader* msg = (MessageHeader*)closure; \
DEREF(message_data(closure), oneofdata->case_ofs, uint32_t) = \
oneofdata->oneof_case_num; \
DEREF(message_data(closure), oneofdata->ofs, ctype) = val; \
return true; \
}
DEFINE_ONEOF_HANDLER(bool, bool)
DEFINE_ONEOF_HANDLER(int32, int32_t)
DEFINE_ONEOF_HANDLER(uint32, uint32_t)
DEFINE_ONEOF_HANDLER(float, float)
DEFINE_ONEOF_HANDLER(int64, int64_t)
DEFINE_ONEOF_HANDLER(uint64, uint64_t)
DEFINE_ONEOF_HANDLER(double, double)
#undef DEFINE_ONEOF_HANDLER
static void oneof_cleanup(MessageHeader* msg,
const oneof_handlerdata_t* oneofdata) {
uint32_t old_case_num =
DEREF(message_data(msg), oneofdata->case_ofs, uint32_t);
if (old_case_num == 0) {
return;
}
const upb_fielddef* old_field =
upb_msgdef_itof(oneofdata->parent_md, old_case_num);
bool need_clean = false;
switch (upb_fielddef_type(old_field)) {
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
need_clean = true;
break;
case UPB_TYPE_MESSAGE:
if (oneofdata->oneof_case_num != old_case_num) {
need_clean = true;
}
break;
default:
break;
}
if (need_clean) {
#if PHP_MAJOR_VERSION < 7
SEPARATE_ZVAL_IF_NOT_REF(
DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*));
php_proto_zval_ptr_dtor(
*DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*));
MAKE_STD_ZVAL(*DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*));
ZVAL_NULL(*DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*));
#endif
}
}
// Handlers for string/bytes in a oneof.
static void *oneofbytes_handler(void *closure,
const void *hd,
size_t size_hint) {
MessageHeader* msg = closure;
const oneof_handlerdata_t *oneofdata = hd;
oneof_cleanup(msg, oneofdata);
DEREF(message_data(msg), oneofdata->case_ofs, uint32_t) =
oneofdata->oneof_case_num;
DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*) =
OBJ_PROP(&msg->std, oneofdata->property_ofs);
return empty_php_string(DEREF(
message_data(msg), oneofdata->ofs, CACHED_VALUE*));
}
static void *oneofstr_handler(void *closure,
const void *hd,
size_t size_hint) {
// TODO(teboring): Add it back.
// rb_enc_associate(str, kRubyString8bitEncoding);
return oneofbytes_handler(closure, hd, size_hint);
}
// Handler for a submessage field in a oneof.
static void* oneofsubmsg_handler(void* closure, const void* hd) {
MessageHeader* msg = closure;
const oneof_handlerdata_t *oneofdata = hd;
uint32_t oldcase = DEREF(message_data(msg), oneofdata->case_ofs, uint32_t);
TSRMLS_FETCH();
Descriptor* subdesc =
UNBOX_HASHTABLE_VALUE(Descriptor, get_def_obj((void*)oneofdata->md));
zend_class_entry* subklass = subdesc->klass;
zval* submsg_php;
MessageHeader* submsg;
if (oldcase != oneofdata->oneof_case_num) {
oneof_cleanup(msg, oneofdata);
// Create new message.
DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*) =
OBJ_PROP(&msg->std, oneofdata->property_ofs);
ZVAL_OBJ(CACHED_PTR_TO_ZVAL_PTR(
DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*)),
subklass->create_object(subklass TSRMLS_CC));
}
DEREF(message_data(msg), oneofdata->case_ofs, uint32_t) =
oneofdata->oneof_case_num;
submsg_php = CACHED_PTR_TO_ZVAL_PTR(
DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*));
submsg = UNBOX(MessageHeader, submsg_php);
custom_data_init(subklass, submsg PHP_PROTO_TSRMLS_CC);
return submsg;
}
// Set up handlers for a repeated field.
static void add_handlers_for_repeated_field(upb_handlers *h,
const upb_fielddef *f,
size_t offset) {
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset));
upb_handlers_setstartseq(h, f, startseq_handler, &attr);
upb_handlerattr_uninit(&attr);
switch (upb_fielddef_type(f)) {
#define SET_HANDLER(utype, ltype) \
case utype: \
upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \
break;
SET_HANDLER(UPB_TYPE_BOOL, bool);
SET_HANDLER(UPB_TYPE_INT32, int32);
SET_HANDLER(UPB_TYPE_UINT32, uint32);
SET_HANDLER(UPB_TYPE_ENUM, int32);
SET_HANDLER(UPB_TYPE_FLOAT, float);
SET_HANDLER(UPB_TYPE_INT64, int64);
SET_HANDLER(UPB_TYPE_UINT64, uint64);
SET_HANDLER(UPB_TYPE_DOUBLE, double);
#undef SET_HANDLER
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
upb_handlers_setstartstr(h, f, is_bytes ?
appendbytes_handler : appendstr_handler,
NULL);
#if PHP_MAJOR_VERSION < 7
upb_handlers_setstring(h, f, stringdata_handler, NULL);
#else
upb_handlers_setstring(h, f, zendstringdata_handler, NULL);
#endif
break;
}
case UPB_TYPE_MESSAGE: {
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f));
upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr);
upb_handlerattr_uninit(&attr);
break;
}
}
}
// Set up handlers for a singular field.
static void add_handlers_for_singular_field(upb_handlers *h,
const upb_fielddef *f,
size_t offset) {
switch (upb_fielddef_type(f)) {
#define SET_HANDLER(utype, ltype) \
case utype: { \
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; \
upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); \
upb_handlers_set##ltype(h, f, ltype##_handler, &attr); \
break; \
}
SET_HANDLER(UPB_TYPE_BOOL, bool);
SET_HANDLER(UPB_TYPE_INT32, int32);
SET_HANDLER(UPB_TYPE_UINT32, uint32);
SET_HANDLER(UPB_TYPE_ENUM, int32);
SET_HANDLER(UPB_TYPE_FLOAT, float);
SET_HANDLER(UPB_TYPE_INT64, int64);
SET_HANDLER(UPB_TYPE_UINT64, uint64);
SET_HANDLER(UPB_TYPE_DOUBLE, double);
#undef SET_HANDLER
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset));
upb_handlers_setstartstr(h, f,
is_bytes ? bytes_handler : str_handler,
&attr);
upb_handlers_setstring(h, f, stringdata_handler, &attr);
upb_handlerattr_uninit(&attr);
break;
}
case UPB_TYPE_MESSAGE: {
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, offset, f));
upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr);
upb_handlerattr_uninit(&attr);
break;
}
}
}
// Adds handlers to a map field.
static void add_handlers_for_mapfield(upb_handlers* h,
const upb_fielddef* fielddef,
size_t offset,
Descriptor* desc) {
const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef);
map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc);
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlers_addcleanup(h, hd, free);
upb_handlerattr_sethandlerdata(&attr, hd);
upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr);
upb_handlerattr_uninit(&attr);
}
// Adds handlers to a map-entry msgdef.
static void add_handlers_for_mapentry(const upb_msgdef* msgdef, upb_handlers* h,
Descriptor* desc) {
const upb_fielddef* key_field = map_entry_key(msgdef);
const upb_fielddef* value_field = map_entry_value(msgdef);
map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc);
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlers_addcleanup(h, hd, free);
upb_handlerattr_sethandlerdata(&attr, hd);
upb_handlers_setendmsg(h, endmap_handler, &attr);
add_handlers_for_singular_field(h, key_field,
offsetof(map_parse_frame_data_t,
key_storage));
add_handlers_for_singular_field(h, value_field,
offsetof(map_parse_frame_data_t,
value_storage));
}
// Set up handlers for a oneof field.
static void add_handlers_for_oneof_field(upb_handlers *h,
const upb_msgdef *m,
const upb_fielddef *f,
size_t offset,
size_t oneof_case_offset,
int property_cache_offset) {
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(
&attr, newoneofhandlerdata(h, offset, oneof_case_offset,
property_cache_offset, m, f));
switch (upb_fielddef_type(f)) {
#define SET_HANDLER(utype, ltype) \
case utype: \
upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \
break;
SET_HANDLER(UPB_TYPE_BOOL, bool);
SET_HANDLER(UPB_TYPE_INT32, int32);
SET_HANDLER(UPB_TYPE_UINT32, uint32);
SET_HANDLER(UPB_TYPE_ENUM, int32);
SET_HANDLER(UPB_TYPE_FLOAT, float);
SET_HANDLER(UPB_TYPE_INT64, int64);
SET_HANDLER(UPB_TYPE_UINT64, uint64);
SET_HANDLER(UPB_TYPE_DOUBLE, double);
#undef SET_HANDLER
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
upb_handlers_setstartstr(h, f, is_bytes ?
oneofbytes_handler : oneofstr_handler,
&attr);
upb_handlers_setstring(h, f, stringdata_handler, NULL);
break;
}
case UPB_TYPE_MESSAGE: {
upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr);
break;
}
}
upb_handlerattr_uninit(&attr);
}
static bool add_unknown_handler(void* closure, const void* hd, const char* buf,
size_t size) {
encodeunknown_handlerfunc handler =
((unknownfields_handlerdata_t*)hd)->handler;
MessageHeader* msg = (MessageHeader*)closure;
stringsink* unknown = DEREF(message_data(msg), 0, stringsink*);
if (unknown == NULL) {
DEREF(message_data(msg), 0, stringsink*) = ALLOC(stringsink);
unknown = DEREF(message_data(msg), 0, stringsink*);
stringsink_init(unknown);
}
handler(unknown, NULL, buf, size, NULL);
return true;
}
static void add_handlers_for_message(const void* closure,
upb_handlers* h) {
const upb_msgdef* msgdef = upb_handlers_msgdef(h);
TSRMLS_FETCH();
Descriptor* desc =
UNBOX_HASHTABLE_VALUE(Descriptor, get_def_obj((void*)msgdef));
upb_msg_field_iter i;
// If this is a mapentry message type, set up a special set of handlers and
// bail out of the normal (user-defined) message type handling.
if (upb_msgdef_mapentry(msgdef)) {
add_handlers_for_mapentry(msgdef, h, desc);
return;
}
// Ensure layout exists. We may be invoked to create handlers for a given
// message if we are included as a submsg of another message type before our
// class is actually built, so to work around this, we just create the layout
// (and handlers, in the class-building function) on-demand.
if (desc->layout == NULL) {
desc->layout = create_layout(desc->msgdef);
}
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, newunknownfieldshandlerdata(h));
upb_handlers_setunknown(h, add_unknown_handler, &attr);
for (upb_msg_field_begin(&i, desc->msgdef);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset;
if (upb_fielddef_containingoneof(f)) {
size_t oneof_case_offset =
desc->layout->fields[upb_fielddef_index(f)].case_offset;
int property_cache_index =
desc->layout->fields[upb_fielddef_index(f)].cache_index;
add_handlers_for_oneof_field(h, desc->msgdef, f, offset,
oneof_case_offset, property_cache_index);
} else if (is_map_field(f)) {
add_handlers_for_mapfield(h, f, offset, desc);
} else if (upb_fielddef_isseq(f)) {
add_handlers_for_repeated_field(h, f, offset);
} else {
add_handlers_for_singular_field(h, f, offset);
}
}
}
// Creates upb handlers for populating a message.
static const upb_handlers *new_fill_handlers(Descriptor* desc,
const void* owner) {
// TODO(cfallin, haberman): once upb gets a caching/memoization layer for
// handlers, reuse subdef handlers so that e.g. if we already parse
// B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to
// parse A-with-field-of-type-B-with-field-of-type-C.
return upb_handlers_newfrozen(desc->msgdef, owner,
add_handlers_for_message, NULL);
}
// Constructs the handlers for filling a message's data into an in-memory
// object.
const upb_handlers* get_fill_handlers(Descriptor* desc) {
if (!desc->fill_handlers) {
desc->fill_handlers =
new_fill_handlers(desc, &desc->fill_handlers);
}
return desc->fill_handlers;
}
const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc,
const void* owner) {
const upb_handlers* handlers = get_fill_handlers(desc);
upb_pbdecodermethodopts opts;
upb_pbdecodermethodopts_init(&opts, handlers);
return upb_pbdecodermethod_new(&opts, owner);
}
static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) {
if (desc->fill_method == NULL) {
desc->fill_method = new_fillmsg_decodermethod(
desc, &desc->fill_method);
}
return desc->fill_method;
}
static const upb_json_parsermethod *msgdef_jsonparsermethod(Descriptor* desc) {
if (desc->json_fill_method == NULL) {
desc->json_fill_method =
upb_json_parsermethod_new(desc->msgdef, &desc->json_fill_method);
}
return desc->json_fill_method;
}
// -----------------------------------------------------------------------------
// Serializing.
// -----------------------------------------------------------------------------
static void putmsg(zval* msg, const Descriptor* desc, upb_sink* sink,
int depth TSRMLS_DC);
static void putrawmsg(MessageHeader* msg, const Descriptor* desc,
upb_sink* sink, int depth TSRMLS_DC);
static void putstr(zval* str, const upb_fielddef* f, upb_sink* sink);
static void putrawstr(const char* str, int len, const upb_fielddef* f,
upb_sink* sink);
static void putsubmsg(zval* submsg, const upb_fielddef* f, upb_sink* sink,
int depth TSRMLS_DC);
static void putrawsubmsg(MessageHeader* submsg, const upb_fielddef* f,
upb_sink* sink, int depth TSRMLS_DC);
static void putarray(zval* array, const upb_fielddef* f, upb_sink* sink,
int depth TSRMLS_DC);
static void putmap(zval* map, const upb_fielddef* f, upb_sink* sink,
int depth TSRMLS_DC);
static upb_selector_t getsel(const upb_fielddef* f, upb_handlertype_t type) {
upb_selector_t ret;
bool ok = upb_handlers_getselector(f, type, &ret);
UPB_ASSERT(ok);
return ret;
}
static void put_optional_value(const void* memory, int len, const upb_fielddef* f,
int depth, upb_sink* sink TSRMLS_DC) {
assert(upb_fielddef_label(f) == UPB_LABEL_OPTIONAL);
switch (upb_fielddef_type(f)) {
#define T(upbtypeconst, upbtype, ctype, default_value) \
case upbtypeconst: { \
ctype value = DEREF(memory, 0, ctype); \
if (value != default_value) { \
upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); \
upb_sink_put##upbtype(sink, sel, value); \
} \
} break;
T(UPB_TYPE_FLOAT, float, float, 0.0)
T(UPB_TYPE_DOUBLE, double, double, 0.0)
T(UPB_TYPE_BOOL, bool, uint8_t, 0)
T(UPB_TYPE_ENUM, int32, int32_t, 0)
T(UPB_TYPE_INT32, int32, int32_t, 0)
T(UPB_TYPE_UINT32, uint32, uint32_t, 0)
T(UPB_TYPE_INT64, int64, int64_t, 0)
T(UPB_TYPE_UINT64, uint64, uint64_t, 0)
#undef T
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
putrawstr(memory, len, f, sink);
break;
case UPB_TYPE_MESSAGE: {
#if PHP_MAJOR_VERSION < 7
MessageHeader *submsg = UNBOX(MessageHeader, *(zval**)memory);
#else
MessageHeader *submsg =
(MessageHeader*)((char*)(*(zend_object**)memory) -
XtOffsetOf(MessageHeader, std));
#endif
putrawsubmsg(submsg, f, sink, depth TSRMLS_CC);
break;
}
default:
assert(false);
}
}
// Only string/bytes fields are stored as zval.
static const char* raw_value(void* memory, const upb_fielddef* f) {
switch (upb_fielddef_type(f)) {
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
#if PHP_MAJOR_VERSION < 7
return Z_STRVAL_PP((zval**)memory);
#else
return ZSTR_VAL(*(zend_string**)memory);
#endif
break;
default:
return memory;
}
}
static int raw_value_len(void* memory, int len, const upb_fielddef* f) {
switch (upb_fielddef_type(f)) {
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
#if PHP_MAJOR_VERSION < 7
return Z_STRLEN_PP((zval**)memory);
#else
return ZSTR_LEN(*(zend_string**)memory);
#endif
default:
return len;
}
}
static void putmap(zval* map, const upb_fielddef* f, upb_sink* sink,
int depth TSRMLS_DC) {
upb_sink subsink;
const upb_fielddef* key_field;
const upb_fielddef* value_field;
MapIter it;
int len, size;
assert(map != NULL);
Map* intern = UNBOX(Map, map);
size = upb_strtable_count(&intern->table);
if (size == 0) return;
upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE);
key_field = map_field_key(f);
value_field = map_field_value(f);
for (map_begin(map, &it TSRMLS_CC); !map_done(&it); map_next(&it)) {
upb_status status;
upb_sink entry_sink;
upb_sink_startsubmsg(&subsink, getsel(f, UPB_HANDLER_STARTSUBMSG),
&entry_sink);
upb_sink_startmsg(&entry_sink);
// Serialize key.
const char *key = map_iter_key(&it, &len);
put_optional_value(key, len, key_field, depth + 1, &entry_sink TSRMLS_CC);
// Serialize value.
upb_value value = map_iter_value(&it, &len);
put_optional_value(raw_value(upb_value_memory(&value), value_field),
raw_value_len(upb_value_memory(&value), len, value_field),
value_field, depth + 1, &entry_sink TSRMLS_CC);
upb_sink_endmsg(&entry_sink, &status);
upb_sink_endsubmsg(&subsink, getsel(f, UPB_HANDLER_ENDSUBMSG));
}
upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
}
static void putmsg(zval* msg_php, const Descriptor* desc, upb_sink* sink,
int depth TSRMLS_DC) {
MessageHeader* msg = UNBOX(MessageHeader, msg_php);
putrawmsg(msg, desc, sink, depth TSRMLS_CC);
}
static void putrawmsg(MessageHeader* msg, const Descriptor* desc,
upb_sink* sink, int depth TSRMLS_DC) {
upb_msg_field_iter i;
upb_status status;
upb_sink_startmsg(sink);
// Protect against cycles (possible because users may freely reassign message
// and repeated fields) by imposing a maximum recursion depth.
if (depth > ENCODE_MAX_NESTING) {
zend_error(E_ERROR,
"Maximum recursion depth exceeded during encoding.");
}
for (upb_msg_field_begin(&i, desc->msgdef); !upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef* f = upb_msg_iter_field(&i);
uint32_t offset = desc->layout->fields[upb_fielddef_index(f)].offset;
bool containing_oneof = false;
if (upb_fielddef_containingoneof(f)) {
uint32_t oneof_case_offset =
desc->layout->fields[upb_fielddef_index(f)].case_offset;
// For a oneof, check that this field is actually present -- skip all the
// below if not.
if (DEREF(message_data(msg), oneof_case_offset, uint32_t) !=
upb_fielddef_number(f)) {
continue;
}
// Otherwise, fall through to the appropriate singular-field handler
// below.
containing_oneof = true;
}
if (is_map_field(f)) {
zval* map = CACHED_PTR_TO_ZVAL_PTR(
DEREF(message_data(msg), offset, CACHED_VALUE*));
if (map != NULL) {
putmap(map, f, sink, depth TSRMLS_CC);
}
} else if (upb_fielddef_isseq(f)) {
zval* array = CACHED_PTR_TO_ZVAL_PTR(
DEREF(message_data(msg), offset, CACHED_VALUE*));
if (array != NULL) {
putarray(array, f, sink, depth TSRMLS_CC);
}
} else if (upb_fielddef_isstring(f)) {
zval* str = CACHED_PTR_TO_ZVAL_PTR(
DEREF(message_data(msg), offset, CACHED_VALUE*));
if (containing_oneof || Z_STRLEN_P(str) > 0) {
putstr(str, f, sink);
}
} else if (upb_fielddef_issubmsg(f)) {
putsubmsg(CACHED_PTR_TO_ZVAL_PTR(
DEREF(message_data(msg), offset, CACHED_VALUE*)),
f, sink, depth TSRMLS_CC);
} else {
upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
#define T(upbtypeconst, upbtype, ctype, default_value) \
case upbtypeconst: { \
ctype value = DEREF(message_data(msg), offset, ctype); \
if (containing_oneof || value != default_value) { \
upb_sink_put##upbtype(sink, sel, value); \
} \
} break;
switch (upb_fielddef_type(f)) {
T(UPB_TYPE_FLOAT, float, float, 0.0)
T(UPB_TYPE_DOUBLE, double, double, 0.0)
T(UPB_TYPE_BOOL, bool, uint8_t, 0)
case UPB_TYPE_ENUM:
T(UPB_TYPE_INT32, int32, int32_t, 0)
T(UPB_TYPE_UINT32, uint32, uint32_t, 0)
T(UPB_TYPE_INT64, int64, int64_t, 0)
T(UPB_TYPE_UINT64, uint64, uint64_t, 0)
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
case UPB_TYPE_MESSAGE:
zend_error(E_ERROR, "Internal error.");
}
#undef T
}
}
stringsink* unknown = DEREF(message_data(msg), 0, stringsink*);
if (unknown != NULL) {
upb_sink_putunknown(sink, unknown->ptr, unknown->len);
}
upb_sink_endmsg(sink, &status);
}
static void putstr(zval* str, const upb_fielddef *f, upb_sink *sink) {
upb_sink subsink;
if (ZVAL_IS_NULL(str)) return;
assert(Z_TYPE_P(str) == IS_STRING);
upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), Z_STRLEN_P(str),
&subsink);
// For oneof string field, we may get here with string length is zero.
if (Z_STRLEN_P(str) > 0) {
// Ensure that the string has the correct encoding. We also check at
// field-set time, but the user may have mutated the string object since
// then.
if (upb_fielddef_type(f) == UPB_TYPE_STRING &&
!is_structurally_valid_utf8(Z_STRVAL_P(str), Z_STRLEN_P(str))) {
zend_error(E_USER_ERROR, "Given string is not UTF8 encoded.");
return;
}
upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), Z_STRVAL_P(str),
Z_STRLEN_P(str), NULL);
}
upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR));
}
static void putrawstr(const char* str, int len, const upb_fielddef* f,
upb_sink* sink) {
upb_sink subsink;
if (len == 0) return;
// Ensure that the string has the correct encoding. We also check at field-set
// time, but the user may have mutated the string object since then.
if (upb_fielddef_type(f) == UPB_TYPE_STRING &&
!is_structurally_valid_utf8(str, len)) {
zend_error(E_USER_ERROR, "Given string is not UTF8 encoded.");
return;
}
upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), len, &subsink);
upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), str, len, NULL);
upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR));
}
static void putsubmsg(zval* submsg_php, const upb_fielddef* f, upb_sink* sink,
int depth TSRMLS_DC) {
if (Z_TYPE_P(submsg_php) == IS_NULL) return;
MessageHeader *submsg = UNBOX(MessageHeader, submsg_php);
putrawsubmsg(submsg, f, sink, depth TSRMLS_CC);
}
static void putrawsubmsg(MessageHeader* submsg, const upb_fielddef* f,
upb_sink* sink, int depth TSRMLS_DC) {
upb_sink subsink;
Descriptor* subdesc =
UNBOX_HASHTABLE_VALUE(Descriptor, get_def_obj(upb_fielddef_msgsubdef(f)));
upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink);
putrawmsg(submsg, subdesc, &subsink, depth + 1 TSRMLS_CC);
upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG));
}
static void putarray(zval* array, const upb_fielddef* f, upb_sink* sink,
int depth TSRMLS_DC) {
upb_sink subsink;
upb_fieldtype_t type = upb_fielddef_type(f);
upb_selector_t sel = 0;
int size, i;
assert(array != NULL);
RepeatedField* intern = UNBOX(RepeatedField, array);
HashTable *ht = PHP_PROTO_HASH_OF(intern->array);
size = zend_hash_num_elements(ht);
if (size == 0) return;
upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
if (upb_fielddef_isprimitive(f)) {
sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
}
for (i = 0; i < size; i++) {
void* memory = repeated_field_index_native(intern, i TSRMLS_CC);
switch (type) {
#define T(upbtypeconst, upbtype, ctype) \
case upbtypeconst: \
upb_sink_put##upbtype(&subsink, sel, *((ctype*)memory)); \
break;
T(UPB_TYPE_FLOAT, float, float)
T(UPB_TYPE_DOUBLE, double, double)
T(UPB_TYPE_BOOL, bool, int8_t)
case UPB_TYPE_ENUM:
T(UPB_TYPE_INT32, int32, int32_t)
T(UPB_TYPE_UINT32, uint32, uint32_t)
T(UPB_TYPE_INT64, int64, int64_t)
T(UPB_TYPE_UINT64, uint64, uint64_t)
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
#if PHP_MAJOR_VERSION < 7
const char* rawstr = Z_STRVAL_P(*(zval**)memory);
int len = Z_STRLEN_P(*(zval**)memory);
#else
const char* rawstr = ZSTR_VAL(*(zend_string**)memory);
int len = ZSTR_LEN(*(zend_string**)memory);
#endif
putrawstr(rawstr, len, f, &subsink);
break;
}
case UPB_TYPE_MESSAGE: {
#if PHP_MAJOR_VERSION < 7
MessageHeader *submsg = UNBOX(MessageHeader, *(zval**)memory);
#else
MessageHeader *submsg =
(MessageHeader*)((char*)(Z_OBJ_P((zval*)memory)) -
XtOffsetOf(MessageHeader, std));
#endif
putrawsubmsg(submsg, f, &subsink, depth TSRMLS_CC);
break;
}
#undef T
}
}
upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
}
static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) {
if (desc->pb_serialize_handlers == NULL) {
desc->pb_serialize_handlers =
upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers);
}
return desc->pb_serialize_handlers;
}
static const upb_handlers* msgdef_json_serialize_handlers(
Descriptor* desc, bool preserve_proto_fieldnames) {
if (preserve_proto_fieldnames) {
if (desc->json_serialize_handlers == NULL) {
desc->json_serialize_handlers =
upb_json_printer_newhandlers(
desc->msgdef, true, &desc->json_serialize_handlers);
}
return desc->json_serialize_handlers;
} else {
if (desc->json_serialize_handlers_preserve == NULL) {
desc->json_serialize_handlers_preserve =
upb_json_printer_newhandlers(
desc->msgdef, false, &desc->json_serialize_handlers_preserve);
}
return desc->json_serialize_handlers_preserve;
}
}
// -----------------------------------------------------------------------------
// PHP encode/decode methods
// -----------------------------------------------------------------------------
void serialize_to_string(zval* val, zval* return_value TSRMLS_DC) {
Descriptor* desc =
UNBOX_HASHTABLE_VALUE(Descriptor, get_ce_obj(Z_OBJCE_P(val)));
stringsink sink;
stringsink_init(&sink);
{
const upb_handlers* serialize_handlers = msgdef_pb_serialize_handlers(desc);
stackenv se;
upb_pb_encoder* encoder;
stackenv_init(&se, "Error occurred during encoding: %s");
encoder = upb_pb_encoder_create(&se.env, serialize_handlers, &sink.sink);
putmsg(val, desc, upb_pb_encoder_input(encoder), 0 TSRMLS_CC);
PHP_PROTO_RETVAL_STRINGL(sink.ptr, sink.len, 1);
stackenv_uninit(&se);
stringsink_uninit(&sink);
}
}
PHP_METHOD(Message, serializeToString) {
serialize_to_string(getThis(), return_value TSRMLS_CC);
}
void merge_from_string(const char* data, int data_len, const Descriptor* desc,
MessageHeader* msg) {
const upb_pbdecodermethod* method = msgdef_decodermethod(desc);
const upb_handlers* h = upb_pbdecodermethod_desthandlers(method);
stackenv se;
upb_sink sink;
upb_pbdecoder* decoder;
stackenv_init(&se, "Error occurred during parsing: %s");
upb_sink_reset(&sink, h, msg);
decoder = upb_pbdecoder_create(&se.env, method, &sink);
upb_bufsrc_putbuf(data, data_len, upb_pbdecoder_input(decoder));
stackenv_uninit(&se);
}
PHP_METHOD(Message, mergeFromString) {
Descriptor* desc =
UNBOX_HASHTABLE_VALUE(Descriptor, get_ce_obj(Z_OBJCE_P(getThis())));
MessageHeader* msg = UNBOX(MessageHeader, getThis());
char *data = NULL;
PHP_PROTO_SIZE data_len;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &data, &data_len) ==
FAILURE) {
return;
}
merge_from_string(data, data_len, desc, msg);
}
PHP_METHOD(Message, serializeToJsonString) {
Descriptor* desc =
UNBOX_HASHTABLE_VALUE(Descriptor, get_ce_obj(Z_OBJCE_P(getThis())));
zend_bool preserve_proto_fieldnames = false;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|b",
&preserve_proto_fieldnames) == FAILURE) {
return;
}
stringsink sink;
stringsink_init(&sink);
{
const upb_handlers* serialize_handlers =
msgdef_json_serialize_handlers(desc, preserve_proto_fieldnames);
upb_json_printer* printer;
stackenv se;
stackenv_init(&se, "Error occurred during encoding: %s");
printer = upb_json_printer_create(&se.env, serialize_handlers, &sink.sink);
putmsg(getThis(), desc, upb_json_printer_input(printer), 0 TSRMLS_CC);
PHP_PROTO_RETVAL_STRINGL(sink.ptr, sink.len, 1);
stackenv_uninit(&se);
stringsink_uninit(&sink);
}
}
PHP_METHOD(Message, mergeFromJsonString) {
Descriptor* desc =
UNBOX_HASHTABLE_VALUE(Descriptor, get_ce_obj(Z_OBJCE_P(getThis())));
MessageHeader* msg = UNBOX(MessageHeader, getThis());
char *data = NULL;
PHP_PROTO_SIZE data_len;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &data, &data_len) ==
FAILURE) {
return;
}
// TODO(teboring): Check and respect string encoding. If not UTF-8, we need to
// convert, because string handlers pass data directly to message string
// fields.
// TODO(teboring): Clear message.
{
const upb_json_parsermethod* method = msgdef_jsonparsermethod(desc);
stackenv se;
upb_sink sink;
upb_json_parser* parser;
stackenv_init(&se, "Error occurred during parsing: %s");
upb_sink_reset(&sink, get_fill_handlers(desc), msg);
parser = upb_json_parser_create(&se.env, method, &sink);
upb_bufsrc_putbuf(data, data_len, upb_json_parser_input(parser));
stackenv_uninit(&se);
}
}
// TODO(teboring): refactoring with putrawmsg
static void discard_unknown_fields(MessageHeader* msg) {
upb_msg_field_iter it;
stringsink* unknown = DEREF(message_data(msg), 0, stringsink*);
if (unknown != NULL) {
stringsink_uninit(unknown);
FREE(unknown);
DEREF(message_data(msg), 0, stringsink*) = NULL;
}
// Recursively discard unknown fields of submessages.
Descriptor* desc = msg->descriptor;
TSRMLS_FETCH();
for (upb_msg_field_begin(&it, desc->msgdef);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
upb_fielddef* f = upb_msg_iter_field(&it);
uint32_t offset = desc->layout->fields[upb_fielddef_index(f)].offset;
bool containing_oneof = false;
if (upb_fielddef_containingoneof(f)) {
uint32_t oneof_case_offset =
desc->layout->fields[upb_fielddef_index(f)].case_offset;
// For a oneof, check that this field is actually present -- skip all the
// below if not.
if (DEREF(message_data(msg), oneof_case_offset, uint32_t) !=
upb_fielddef_number(f)) {
continue;
}
// Otherwise, fall through to the appropriate singular-field handler
// below.
containing_oneof = true;
}
if (is_map_field(f)) {
MapIter map_it;
int len, size;
const upb_fielddef* value_field;
value_field = map_field_value(f);
if (!upb_fielddef_issubmsg(value_field)) continue;
zval* map_php = CACHED_PTR_TO_ZVAL_PTR(
DEREF(message_data(msg), offset, CACHED_VALUE*));
if (map_php == NULL) continue;
Map* intern = UNBOX(Map, map_php);
for (map_begin(map_php, &map_it TSRMLS_CC);
!map_done(&map_it); map_next(&map_it)) {
upb_value value = map_iter_value(&map_it, &len);
void* memory = raw_value(upb_value_memory(&value), value_field);
#if PHP_MAJOR_VERSION < 7
MessageHeader *submsg = UNBOX(MessageHeader, *(zval**)memory);
#else
MessageHeader *submsg =
(MessageHeader*)((char*)(Z_OBJ_P((zval*)memory)) -
XtOffsetOf(MessageHeader, std));
#endif
discard_unknown_fields(submsg);
}
} else if (upb_fielddef_isseq(f)) {
if (!upb_fielddef_issubmsg(f)) continue;
zval* array_php = CACHED_PTR_TO_ZVAL_PTR(
DEREF(message_data(msg), offset, CACHED_VALUE*));
if (array_php == NULL) continue;
int size, i;
RepeatedField* intern = UNBOX(RepeatedField, array_php);
HashTable *ht = PHP_PROTO_HASH_OF(intern->array);
size = zend_hash_num_elements(ht);
if (size == 0) continue;
for (i = 0; i < size; i++) {
void* memory = repeated_field_index_native(intern, i TSRMLS_CC);
#if PHP_MAJOR_VERSION < 7
MessageHeader *submsg = UNBOX(MessageHeader, *(zval**)memory);
#else
MessageHeader *submsg =
(MessageHeader*)((char*)(Z_OBJ_P((zval*)memory)) -
XtOffsetOf(MessageHeader, std));
#endif
discard_unknown_fields(submsg);
}
} else if (upb_fielddef_issubmsg(f)) {
zval* submsg_php = CACHED_PTR_TO_ZVAL_PTR(
DEREF(message_data(msg), offset, CACHED_VALUE*));
if (Z_TYPE_P(submsg_php) == IS_NULL) continue;
MessageHeader* submsg = UNBOX(MessageHeader, submsg_php);
discard_unknown_fields(submsg);
}
}
}
PHP_METHOD(Message, discardUnknownFields) {
MessageHeader* msg = UNBOX(MessageHeader, getThis());
discard_unknown_fields(msg);
}