blob: eac65124520b632405992d7ab5e1dd0bfefa02de [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#ifndef GOOGLE_PROTOBUF_COMPILER_CPP_HELPERS_H__
#define GOOGLE_PROTOBUF_COMPILER_CPP_HELPERS_H__
#include <map>
#include <string>
#include <google/protobuf/compiler/cpp/cpp_options.h>
#include <google/protobuf/compiler/code_generator.h>
#include <google/protobuf/descriptor.pb.h>
#include <google/protobuf/io/printer.h>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/stubs/strutil.h>
namespace google {
namespace protobuf {
namespace compiler {
namespace cpp {
// Commonly-used separator comments. Thick is a line of '=', thin is a line
// of '-'.
extern const char kThickSeparator[];
extern const char kThinSeparator[];
// Name space of the proto file. This namespace is such that the string
// "<namespace>::some_name" is the correct fully qualified namespace.
// This means if the package is empty the namespace is "", and otherwise
// the namespace is "::foo::bar::...::baz" without trailing semi-colons.
string Namespace(const string& package);
inline string Namespace(const FileDescriptor* d) {
return Namespace(d->package());
}
template <typename Desc>
string Namespace(const Desc* d) {
return Namespace(d->file());
}
// Returns true if it's safe to reset "field" to zero.
bool CanInitializeByZeroing(const FieldDescriptor* field);
string ClassName(const Descriptor* descriptor);
string ClassName(const EnumDescriptor* enum_descriptor);
template <typename Desc>
string QualifiedClassName(const Desc* d) {
return Namespace(d) + "::" + ClassName(d);
}
// DEPRECATED just use ClassName or QualifiedClassName, a boolean is very
// unreadable at the callsite.
// Returns the non-nested type name for the given type. If "qualified" is
// true, prefix the type with the full namespace. For example, if you had:
// package foo.bar;
// message Baz { message Qux {} }
// Then the qualified ClassName for Qux would be:
// ::foo::bar::Baz_Qux
// While the non-qualified version would be:
// Baz_Qux
inline string ClassName(const Descriptor* descriptor, bool qualified) {
return qualified ? QualifiedClassName(descriptor) : ClassName(descriptor);
}
inline string ClassName(const EnumDescriptor* descriptor, bool qualified) {
return qualified ? QualifiedClassName(descriptor) : ClassName(descriptor);
}
// Fully qualified name of the default_instance of this message.
string DefaultInstanceName(const Descriptor* descriptor);
// Returns the name of a no-op function that we can call to introduce a linker
// dependency on the given message type. This is used to implement implicit weak
// fields.
string ReferenceFunctionName(const Descriptor* descriptor);
// Name of the base class: google::protobuf::Message or google::protobuf::MessageLite.
string SuperClassName(const Descriptor* descriptor, const Options& options);
// Get the (unqualified) name that should be used for this field in C++ code.
// The name is coerced to lower-case to emulate proto1 behavior. People
// should be using lowercase-with-underscores style for proto field names
// anyway, so normally this just returns field->name().
string FieldName(const FieldDescriptor* field);
// Get the sanitized name that should be used for the given enum in C++ code.
string EnumValueName(const EnumValueDescriptor* enum_value);
// Returns an estimate of the compiler's alignment for the field. This
// can't guarantee to be correct because the generated code could be compiled on
// different systems with different alignment rules. The estimates below assume
// 64-bit pointers.
int EstimateAlignmentSize(const FieldDescriptor* field);
// Get the unqualified name that should be used for a field's field
// number constant.
string FieldConstantName(const FieldDescriptor *field);
// Returns the scope where the field was defined (for extensions, this is
// different from the message type to which the field applies).
inline const Descriptor* FieldScope(const FieldDescriptor* field) {
return field->is_extension() ?
field->extension_scope() : field->containing_type();
}
// Returns the fully-qualified type name field->message_type(). Usually this
// is just ClassName(field->message_type(), true);
string FieldMessageTypeName(const FieldDescriptor* field);
// Strips ".proto" or ".protodevel" from the end of a filename.
LIBPROTOC_EXPORT string StripProto(const string& filename);
// Get the C++ type name for a primitive type (e.g. "double", "::google::protobuf::int32", etc.).
// Note: non-built-in type names will be qualified, meaning they will start
// with a ::. If you are using the type as a template parameter, you will
// need to insure there is a space between the < and the ::, because the
// ridiculous C++ standard defines "<:" to be a synonym for "[".
const char* PrimitiveTypeName(FieldDescriptor::CppType type);
// Get the declared type name in CamelCase format, as is used e.g. for the
// methods of WireFormat. For example, TYPE_INT32 becomes "Int32".
const char* DeclaredTypeMethodName(FieldDescriptor::Type type);
// Return the code that evaluates to the number when compiled.
string Int32ToString(int number);
// Return the code that evaluates to the number when compiled.
string Int64ToString(int64 number);
// Get code that evaluates to the field's default value.
string DefaultValue(const FieldDescriptor* field);
// Convert a file name into a valid identifier.
string FilenameIdentifier(const string& filename);
// For each .proto file generates a unique namespace. In this namespace global
// definitions are put to prevent collisions.
string FileLevelNamespace(const string& filename);
inline string FileLevelNamespace(const FileDescriptor* file) {
return FileLevelNamespace(file->name());
}
inline string FileLevelNamespace(const Descriptor* d) {
return FileLevelNamespace(d->file());
}
// Return the qualified C++ name for a file level symbol.
string QualifiedFileLevelSymbol(const string& package, const string& name);
// Escape C++ trigraphs by escaping question marks to \?
string EscapeTrigraphs(const string& to_escape);
// Escaped function name to eliminate naming conflict.
string SafeFunctionName(const Descriptor* descriptor,
const FieldDescriptor* field,
const string& prefix);
// Returns true if unknown fields are always preserved after parsing.
inline bool AlwaysPreserveUnknownFields(const FileDescriptor* file) {
return file->syntax() != FileDescriptor::SYNTAX_PROTO3;
}
// Returns true if unknown fields are preserved after parsing.
inline bool AlwaysPreserveUnknownFields(const Descriptor* message) {
return AlwaysPreserveUnknownFields(message->file());
}
// Returns true if generated messages have public unknown fields accessors
inline bool PublicUnknownFieldsAccessors(const Descriptor* message) {
return message->file()->syntax() != FileDescriptor::SYNTAX_PROTO3;
}
// Returns the optimize mode for <file>, respecting <options.enforce_lite>.
::google::protobuf::FileOptions_OptimizeMode GetOptimizeFor(
const FileDescriptor* file, const Options& options);
// Determines whether unknown fields will be stored in an UnknownFieldSet or
// a string.
inline bool UseUnknownFieldSet(const FileDescriptor* file,
const Options& options) {
return GetOptimizeFor(file, options) != FileOptions::LITE_RUNTIME;
}
// Does the file have any map fields, necessitating the file to include
// map_field_inl.h and map.h.
bool HasMapFields(const FileDescriptor* file);
// Does this file have any enum type definitions?
bool HasEnumDefinitions(const FileDescriptor* file);
// Does this file have generated parsing, serialization, and other
// standard methods for which reflection-based fallback implementations exist?
inline bool HasGeneratedMethods(const FileDescriptor* file,
const Options& options) {
return GetOptimizeFor(file, options) != FileOptions::CODE_SIZE;
}
// Do message classes in this file have descriptor and reflection methods?
inline bool HasDescriptorMethods(const FileDescriptor* file,
const Options& options) {
return GetOptimizeFor(file, options) != FileOptions::LITE_RUNTIME;
}
// Should we generate generic services for this file?
inline bool HasGenericServices(const FileDescriptor* file,
const Options& options) {
return file->service_count() > 0 &&
GetOptimizeFor(file, options) != FileOptions::LITE_RUNTIME &&
file->options().cc_generic_services();
}
// Should we generate a separate, super-optimized code path for serializing to
// flat arrays? We don't do this in Lite mode because we'd rather reduce code
// size.
inline bool HasFastArraySerialization(const FileDescriptor* file,
const Options& options) {
return GetOptimizeFor(file, options) == FileOptions::SPEED;
}
inline bool IsMapEntryMessage(const Descriptor* descriptor) {
return descriptor->options().map_entry();
}
// Returns true if the field's CPPTYPE is string or message.
bool IsStringOrMessage(const FieldDescriptor* field);
// For a string field, returns the effective ctype. If the actual ctype is
// not supported, returns the default of STRING.
FieldOptions::CType EffectiveStringCType(const FieldDescriptor* field);
string UnderscoresToCamelCase(const string& input, bool cap_next_letter);
inline bool HasFieldPresence(const FileDescriptor* file) {
return file->syntax() != FileDescriptor::SYNTAX_PROTO3;
}
// Returns true if 'enum' semantics are such that unknown values are preserved
// in the enum field itself, rather than going to the UnknownFieldSet.
inline bool HasPreservingUnknownEnumSemantics(const FileDescriptor* file) {
return file->syntax() == FileDescriptor::SYNTAX_PROTO3;
}
inline bool SupportsArenas(const FileDescriptor* file) {
return file->options().cc_enable_arenas();
}
inline bool SupportsArenas(const Descriptor* desc) {
return SupportsArenas(desc->file());
}
inline bool SupportsArenas(const FieldDescriptor* field) {
return SupportsArenas(field->file());
}
inline bool IsCrossFileMessage(const FieldDescriptor* field) {
return field->type() == FieldDescriptor::TYPE_MESSAGE &&
field->message_type()->file() != field->file();
}
inline string MessageCreateFunction(const Descriptor* d) {
return SupportsArenas(d) ? "CreateMessage" : "Create";
}
inline string MakeDefaultName(const FieldDescriptor* field) {
return "_i_give_permission_to_break_this_code_default_" + FieldName(field) +
"_";
}
bool IsAnyMessage(const FileDescriptor* descriptor);
bool IsAnyMessage(const Descriptor* descriptor);
bool IsWellKnownMessage(const FileDescriptor* descriptor);
void GenerateUtf8CheckCodeForString(const FieldDescriptor* field,
const Options& options, bool for_parse,
const std::map<string, string>& variables,
const char* parameters,
io::Printer* printer);
void GenerateUtf8CheckCodeForCord(const FieldDescriptor* field,
const Options& options, bool for_parse,
const std::map<string, string>& variables,
const char* parameters, io::Printer* printer);
inline ::google::protobuf::FileOptions_OptimizeMode GetOptimizeFor(
const FileDescriptor* file, const Options& options) {
return options.enforce_lite
? FileOptions::LITE_RUNTIME
: file->options().optimize_for();
}
// This orders the messages in a .pb.cc as it's outputted by file.cc
void FlattenMessagesInFile(const FileDescriptor* file,
std::vector<const Descriptor*>* result);
inline std::vector<const Descriptor*> FlattenMessagesInFile(
const FileDescriptor* file) {
std::vector<const Descriptor*> result;
FlattenMessagesInFile(file, &result);
return result;
}
bool HasWeakFields(const Descriptor* desc);
bool HasWeakFields(const FileDescriptor* desc);
// Returns true if the "required" restriction check should be ignored for the
// given field.
inline static bool ShouldIgnoreRequiredFieldCheck(const FieldDescriptor* field,
const Options& options) {
return false;
}
class LIBPROTOC_EXPORT NamespaceOpener {
public:
explicit NamespaceOpener(io::Printer* printer) : printer_(printer) {}
NamespaceOpener(const string& name, io::Printer* printer)
: printer_(printer) {
ChangeTo(name);
}
~NamespaceOpener() { ChangeTo(""); }
void ChangeTo(const string& name) {
std::vector<string> new_stack_ =
Split(name, "::", true);
int len = std::min(name_stack_.size(), new_stack_.size());
int common_idx = 0;
while (common_idx < len) {
if (name_stack_[common_idx] != new_stack_[common_idx]) break;
common_idx++;
}
for (int i = name_stack_.size() - 1; i >= common_idx; i--) {
printer_->Print("} // namespace $ns$\n", "ns", name_stack_[i]);
}
name_stack_.swap(new_stack_);
for (int i = common_idx; i < name_stack_.size(); i++) {
printer_->Print("namespace $ns$ {\n", "ns", name_stack_[i]);
}
}
private:
io::Printer* printer_;
std::vector<string> name_stack_;
};
// Description of each strongly connected component. Note that the order
// of both the descriptors in this SCC and the order of children is
// deterministic.
struct SCC {
std::vector<const Descriptor*> descriptors;
std::vector<const SCC*> children;
const Descriptor* GetRepresentative() const { return descriptors[0]; }
};
struct MessageAnalysis {
bool is_recursive;
bool contains_cord;
bool contains_extension;
bool contains_required;
};
// This class is used in FileGenerator, to ensure linear instead of
// quadratic performance, if we do this per message we would get O(V*(V+E)).
// Logically this is just only used in message.cc, but in the header for
// FileGenerator to help share it.
class LIBPROTOC_EXPORT SCCAnalyzer {
public:
explicit SCCAnalyzer(const Options& options) : options_(options), index_(0) {}
~SCCAnalyzer() {
for (int i = 0; i < garbage_bin_.size(); i++) delete garbage_bin_[i];
}
const SCC* GetSCC(const Descriptor* descriptor) {
if (cache_.count(descriptor)) return cache_[descriptor].scc;
return DFS(descriptor).scc;
}
MessageAnalysis GetSCCAnalysis(const SCC* scc);
bool HasRequiredFields(const Descriptor* descriptor) {
MessageAnalysis result = GetSCCAnalysis(GetSCC(descriptor));
return result.contains_required || result.contains_extension;
}
private:
struct NodeData {
const SCC* scc; // if null it means its still on the stack
int index;
int lowlink;
};
Options options_;
std::map<const Descriptor*, NodeData> cache_;
std::map<const SCC*, MessageAnalysis> analysis_cache_;
std::vector<const Descriptor*> stack_;
int index_;
std::vector<SCC*> garbage_bin_;
SCC* CreateSCC() {
garbage_bin_.push_back(new SCC());
return garbage_bin_.back();
}
// Tarjan's Strongly Connected Components algo
NodeData DFS(const Descriptor* descriptor);
// Add the SCC's that are children of this SCC to its children.
void AddChildren(SCC* scc);
};
void ListAllFields(const Descriptor* d,
std::vector<const FieldDescriptor*>* fields);
void ListAllFields(const FileDescriptor* d,
std::vector<const FieldDescriptor*>* fields);
void ListAllTypesForServices(const FileDescriptor* fd,
std::vector<const Descriptor*>* types);
// Indicates whether we should use implicit weak fields for this file.
bool UsingImplicitWeakFields(const FileDescriptor* file,
const Options& options);
// Indicates whether to treat this field as implicitly weak.
bool IsImplicitWeakField(const FieldDescriptor* field, const Options& options,
SCCAnalyzer* scc_analyzer);
} // namespace cpp
} // namespace compiler
} // namespace protobuf
} // namespace google
#endif // GOOGLE_PROTOBUF_COMPILER_CPP_HELPERS_H__