blob: 6def637ee00fc7d78411712ef055650d56601174 [file] [log] [blame]
#include <google/protobuf/stubs/time.h>
#include <ctime>
#include <google/protobuf/stubs/stringprintf.h>
#include <google/protobuf/stubs/strutil.h>
namespace google {
namespace protobuf {
namespace internal {
namespace {
static const int64 kSecondsPerMinute = 60;
static const int64 kSecondsPerHour = 3600;
static const int64 kSecondsPerDay = kSecondsPerHour * 24;
static const int64 kSecondsPer400Years =
kSecondsPerDay * (400 * 365 + 400 / 4 - 3);
// Seconds from 0001-01-01T00:00:00 to 1970-01-01T:00:00:00
static const int64 kSecondsFromEraToEpoch = 62135596800LL;
// The range of timestamp values we support.
static const int64 kMinTime = -62135596800LL; // 0001-01-01T00:00:00
static const int64 kMaxTime = 253402300799LL; // 9999-12-31T23:59:59
static const int kNanosPerMillisecond = 1000000;
static const int kNanosPerMicrosecond = 1000;
// Count the seconds from the given year (start at Jan 1, 00:00) to 100 years
// after.
int64 SecondsPer100Years(int year) {
if (year % 400 == 0 || year % 400 > 300) {
return kSecondsPerDay * (100 * 365 + 100 / 4);
} else {
return kSecondsPerDay * (100 * 365 + 100 / 4 - 1);
}
}
// Count the seconds from the given year (start at Jan 1, 00:00) to 4 years
// after.
int64 SecondsPer4Years(int year) {
if ((year % 100 == 0 || year % 100 > 96) &&
!(year % 400 == 0 || year % 400 > 396)) {
// No leap years.
return kSecondsPerDay * (4 * 365);
} else {
// One leap years.
return kSecondsPerDay * (4 * 365 + 1);
}
}
bool IsLeapYear(int year) {
return year % 400 == 0 || (year % 4 == 0 && year % 100 != 0);
}
int64 SecondsPerYear(int year) {
return kSecondsPerDay * (IsLeapYear(year) ? 366 : 365);
}
static const int kDaysInMonth[13] = {
0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
int64 SecondsPerMonth(int month, bool leap) {
if (month == 2 && leap) {
return kSecondsPerDay * (kDaysInMonth[month] + 1);
}
return kSecondsPerDay * kDaysInMonth[month];
}
static const int kDaysSinceJan[13] = {
0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334,
};
bool ValidateDateTime(const DateTime& time) {
if (time.year < 1 || time.year > 9999 ||
time.month < 1 || time.month > 12 ||
time.day < 1 || time.day > 31 ||
time.hour < 0 || time.hour > 23 ||
time.minute < 0 || time.minute > 59 ||
time.second < 0 || time.second > 59) {
return false;
}
if (time.month == 2 && IsLeapYear(time.year)) {
return time.day <= kDaysInMonth[time.month] + 1;
} else {
return time.day <= kDaysInMonth[time.month];
}
}
// Count the number of seconds elapsed from 0001-01-01T00:00:00 to the given
// time.
int64 SecondsSinceCommonEra(const DateTime& time) {
int64 result = 0;
// Years should be between 1 and 9999.
assert(time.year >= 1 && time.year <= 9999);
int year = 1;
if ((time.year - year) >= 400) {
int count_400years = (time.year - year) / 400;
result += kSecondsPer400Years * count_400years;
year += count_400years * 400;
}
while ((time.year - year) >= 100) {
result += SecondsPer100Years(year);
year += 100;
}
while ((time.year - year) >= 4) {
result += SecondsPer4Years(year);
year += 4;
}
while (time.year > year) {
result += SecondsPerYear(year);
++year;
}
// Months should be between 1 and 12.
assert(time.month >= 1 && time.month <= 12);
int month = time.month;
result += kSecondsPerDay * kDaysSinceJan[month];
if (month > 2 && IsLeapYear(year)) {
result += kSecondsPerDay;
}
assert(time.day >= 1 &&
time.day <= (month == 2 && IsLeapYear(year)
? kDaysInMonth[month] + 1
: kDaysInMonth[month]));
result += kSecondsPerDay * (time.day - 1);
result += kSecondsPerHour * time.hour +
kSecondsPerMinute * time.minute +
time.second;
return result;
}
// Format nanoseconds with either 3, 6, or 9 digits depending on the required
// precision to represent the exact value.
string FormatNanos(int32 nanos) {
if (nanos % kNanosPerMillisecond == 0) {
return StringPrintf("%03d", nanos / kNanosPerMillisecond);
} else if (nanos % kNanosPerMicrosecond == 0) {
return StringPrintf("%06d", nanos / kNanosPerMicrosecond);
} else {
return StringPrintf("%09d", nanos);
}
}
// Parses an integer from a null-terminated char sequence. The method
// consumes at most "width" chars. Returns a pointer after the consumed
// integer, or NULL if the data does not start with an integer or the
// integer value does not fall in the range of [min_value, max_value].
const char* ParseInt(const char* data, int width, int min_value,
int max_value, int* result) {
if (!ascii_isdigit(*data)) {
return NULL;
}
int value = 0;
for (int i = 0; i < width; ++i, ++data) {
if (ascii_isdigit(*data)) {
value = value * 10 + (*data - '0');
} else {
break;
}
}
if (value >= min_value && value <= max_value) {
*result = value;
return data;
} else {
return NULL;
}
}
// Consumes the fractional parts of a second into nanos. For example,
// "010" will be parsed to 10000000 nanos.
const char* ParseNanos(const char* data, int32* nanos) {
if (!ascii_isdigit(*data)) {
return NULL;
}
int value = 0;
int len = 0;
// Consume as many digits as there are but only take the first 9 into
// account.
while (ascii_isdigit(*data)) {
if (len < 9) {
value = value * 10 + *data - '0';
}
++len;
++data;
}
while (len < 9) {
value = value * 10;
++len;
}
*nanos = value;
return data;
}
const char* ParseTimezoneOffset(const char* data, int64* offset) {
// Accept format "HH:MM". E.g., "08:00"
int hour;
if ((data = ParseInt(data, 2, 0, 23, &hour)) == NULL) {
return NULL;
}
if (*data++ != ':') {
return NULL;
}
int minute;
if ((data = ParseInt(data, 2, 0, 59, &minute)) == NULL) {
return NULL;
}
*offset = (hour * 60 + minute) * 60;
return data;
}
} // namespace
bool SecondsToDateTime(int64 seconds, DateTime* time) {
if (seconds < kMinTime || seconds > kMaxTime) {
return false;
}
// It's easier to calcuate the DateTime starting from 0001-01-01T00:00:00
seconds = seconds + kSecondsFromEraToEpoch;
int year = 1;
if (seconds >= kSecondsPer400Years) {
int count_400years = seconds / kSecondsPer400Years;
year += 400 * count_400years;
seconds %= kSecondsPer400Years;
}
while (seconds >= SecondsPer100Years(year)) {
seconds -= SecondsPer100Years(year);
year += 100;
}
while (seconds >= SecondsPer4Years(year)) {
seconds -= SecondsPer4Years(year);
year += 4;
}
while (seconds >= SecondsPerYear(year)) {
seconds -= SecondsPerYear(year);
year += 1;
}
bool leap = IsLeapYear(year);
int month = 1;
while (seconds >= SecondsPerMonth(month, leap)) {
seconds -= SecondsPerMonth(month, leap);
++month;
}
int day = 1 + seconds / kSecondsPerDay;
seconds %= kSecondsPerDay;
int hour = seconds / kSecondsPerHour;
seconds %= kSecondsPerHour;
int minute = seconds / kSecondsPerMinute;
seconds %= kSecondsPerMinute;
time->year = year;
time->month = month;
time->day = day;
time->hour = hour;
time->minute = minute;
time->second = static_cast<int>(seconds);
return true;
}
bool DateTimeToSeconds(const DateTime& time, int64* seconds) {
if (!ValidateDateTime(time)) {
return false;
}
*seconds = SecondsSinceCommonEra(time) - kSecondsFromEraToEpoch;
return true;
}
void GetCurrentTime(int64* seconds, int32* nanos) {
// TODO(xiaofeng): Improve the accuracy of this implementation (or just
// remove this method from protobuf).
*seconds = time(NULL);
*nanos = 0;
}
string FormatTime(int64 seconds, int32 nanos) {
DateTime time;
if (nanos < 0 || nanos > 999999999 || !SecondsToDateTime(seconds, &time)) {
return "InvalidTime";
}
string result = StringPrintf("%04d-%02d-%02dT%02d:%02d:%02d",
time.year, time.month, time.day,
time.hour, time.minute, time.second);
if (nanos != 0) {
result += "." + FormatNanos(nanos);
}
return result + "Z";
}
bool ParseTime(const string& value, int64* seconds, int32* nanos) {
DateTime time;
const char* data = value.c_str();
// We only accept:
// Z-normalized: 2015-05-20T13:29:35.120Z
// With UTC offset: 2015-05-20T13:29:35.120-08:00
// Parse year
if ((data = ParseInt(data, 4, 1, 9999, &time.year)) == NULL) {
return false;
}
// Expect '-'
if (*data++ != '-') return false;
// Parse month
if ((data = ParseInt(data, 2, 1, 12, &time.month)) == NULL) {
return false;
}
// Expect '-'
if (*data++ != '-') return false;
// Parse day
if ((data = ParseInt(data, 2, 1, 31, &time.day)) == NULL) {
return false;
}
// Expect 'T'
if (*data++ != 'T') return false;
// Parse hour
if ((data = ParseInt(data, 2, 0, 23, &time.hour)) == NULL) {
return false;
}
// Expect ':'
if (*data++ != ':') return false;
// Parse minute
if ((data = ParseInt(data, 2, 0, 59, &time.minute)) == NULL) {
return false;
}
// Expect ':'
if (*data++ != ':') return false;
// Parse second
if ((data = ParseInt(data, 2, 0, 59, &time.second)) == NULL) {
return false;
}
if (!DateTimeToSeconds(time, seconds)) {
return false;
}
// Parse nanoseconds.
if (*data == '.') {
++data;
// Parse nanoseconds.
if ((data = ParseNanos(data, nanos)) == NULL) {
return false;
}
} else {
*nanos = 0;
}
// Parse UTC offsets.
if (*data == 'Z') {
++data;
} else if (*data == '+') {
++data;
int64 offset;
if ((data = ParseTimezoneOffset(data, &offset)) == NULL) {
return false;
}
*seconds -= offset;
} else if (*data == '-') {
++data;
int64 offset;
if ((data = ParseTimezoneOffset(data, &offset)) == NULL) {
return false;
}
*seconds += offset;
} else {
return false;
}
// Done with parsing.
return *data == 0;
}
} // namespace internal
} // namespace protobuf
} // namespace google