blob: a64769e7cd416181981d0a93500a0d7502285316 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// This test is testing a lot more than just the UnknownFieldSet class. It
// tests handling of unknown fields throughout the system.
#include <google/protobuf/unknown_field_set.h>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/wire_format.h>
#include <google/protobuf/unittest.pb.h>
#include <google/protobuf/test_util.h>
#include <google/protobuf/stubs/callback.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/mutex.h>
#include <google/protobuf/testing/googletest.h>
#include <gtest/gtest.h>
#include <google/protobuf/stubs/stl_util.h>
namespace google {
namespace protobuf {
using internal::WireFormat;
class UnknownFieldSetTest : public testing::Test {
protected:
virtual void SetUp() {
descriptor_ = unittest::TestAllTypes::descriptor();
TestUtil::SetAllFields(&all_fields_);
all_fields_.SerializeToString(&all_fields_data_);
ASSERT_TRUE(empty_message_.ParseFromString(all_fields_data_));
unknown_fields_ = empty_message_.mutable_unknown_fields();
}
const UnknownField* GetField(const string& name) {
const FieldDescriptor* field = descriptor_->FindFieldByName(name);
if (field == NULL) return NULL;
for (int i = 0; i < unknown_fields_->field_count(); i++) {
if (unknown_fields_->field(i).number() == field->number()) {
return &unknown_fields_->field(i);
}
}
return NULL;
}
// Constructs a protocol buffer which contains fields with all the same
// numbers as all_fields_data_ except that each field is some other wire
// type.
string GetBizarroData() {
unittest::TestEmptyMessage bizarro_message;
UnknownFieldSet* bizarro_unknown_fields =
bizarro_message.mutable_unknown_fields();
for (int i = 0; i < unknown_fields_->field_count(); i++) {
const UnknownField& unknown_field = unknown_fields_->field(i);
if (unknown_field.type() == UnknownField::TYPE_VARINT) {
bizarro_unknown_fields->AddFixed32(unknown_field.number(), 1);
} else {
bizarro_unknown_fields->AddVarint(unknown_field.number(), 1);
}
}
string data;
EXPECT_TRUE(bizarro_message.SerializeToString(&data));
return data;
}
const Descriptor* descriptor_;
unittest::TestAllTypes all_fields_;
string all_fields_data_;
// An empty message that has been parsed from all_fields_data_. So, it has
// unknown fields of every type.
unittest::TestEmptyMessage empty_message_;
UnknownFieldSet* unknown_fields_;
};
namespace {
TEST_F(UnknownFieldSetTest, AllFieldsPresent) {
// All fields of TestAllTypes should be present, in numeric order (because
// that's the order we parsed them in). Fields that are not valid field
// numbers of TestAllTypes should NOT be present.
int pos = 0;
for (int i = 0; i < 1000; i++) {
const FieldDescriptor* field = descriptor_->FindFieldByNumber(i);
if (field != NULL) {
ASSERT_LT(pos, unknown_fields_->field_count());
// Do not check oneof field if it is not set.
if (field->containing_oneof() == NULL) {
EXPECT_EQ(i, unknown_fields_->field(pos++).number());
} else if (i == unknown_fields_->field(pos).number()) {
pos++;
}
if (field->is_repeated()) {
// Should have a second instance.
ASSERT_LT(pos, unknown_fields_->field_count());
EXPECT_EQ(i, unknown_fields_->field(pos++).number());
}
}
}
EXPECT_EQ(unknown_fields_->field_count(), pos);
}
TEST_F(UnknownFieldSetTest, Varint) {
const UnknownField* field = GetField("optional_int32");
ASSERT_TRUE(field != NULL);
ASSERT_EQ(UnknownField::TYPE_VARINT, field->type());
EXPECT_EQ(all_fields_.optional_int32(), field->varint());
}
TEST_F(UnknownFieldSetTest, Fixed32) {
const UnknownField* field = GetField("optional_fixed32");
ASSERT_TRUE(field != NULL);
ASSERT_EQ(UnknownField::TYPE_FIXED32, field->type());
EXPECT_EQ(all_fields_.optional_fixed32(), field->fixed32());
}
TEST_F(UnknownFieldSetTest, Fixed64) {
const UnknownField* field = GetField("optional_fixed64");
ASSERT_TRUE(field != NULL);
ASSERT_EQ(UnknownField::TYPE_FIXED64, field->type());
EXPECT_EQ(all_fields_.optional_fixed64(), field->fixed64());
}
TEST_F(UnknownFieldSetTest, LengthDelimited) {
const UnknownField* field = GetField("optional_string");
ASSERT_TRUE(field != NULL);
ASSERT_EQ(UnknownField::TYPE_LENGTH_DELIMITED, field->type());
EXPECT_EQ(all_fields_.optional_string(), field->length_delimited());
}
TEST_F(UnknownFieldSetTest, Group) {
const UnknownField* field = GetField("optionalgroup");
ASSERT_TRUE(field != NULL);
ASSERT_EQ(UnknownField::TYPE_GROUP, field->type());
ASSERT_EQ(1, field->group().field_count());
const UnknownField& nested_field = field->group().field(0);
const FieldDescriptor* nested_field_descriptor =
unittest::TestAllTypes::OptionalGroup::descriptor()->FindFieldByName("a");
ASSERT_TRUE(nested_field_descriptor != NULL);
EXPECT_EQ(nested_field_descriptor->number(), nested_field.number());
ASSERT_EQ(UnknownField::TYPE_VARINT, nested_field.type());
EXPECT_EQ(all_fields_.optionalgroup().a(), nested_field.varint());
}
TEST_F(UnknownFieldSetTest, SerializeFastAndSlowAreEquivalent) {
int size = WireFormat::ComputeUnknownFieldsSize(
empty_message_.unknown_fields());
string slow_buffer;
string fast_buffer;
slow_buffer.resize(size);
fast_buffer.resize(size);
uint8* target = reinterpret_cast<uint8*>(string_as_array(&fast_buffer));
uint8* result = WireFormat::SerializeUnknownFieldsToArray(
empty_message_.unknown_fields(), target);
EXPECT_EQ(size, result - target);
{
io::ArrayOutputStream raw_stream(string_as_array(&slow_buffer), size, 1);
io::CodedOutputStream output_stream(&raw_stream);
WireFormat::SerializeUnknownFields(empty_message_.unknown_fields(),
&output_stream);
ASSERT_FALSE(output_stream.HadError());
}
EXPECT_TRUE(fast_buffer == slow_buffer);
}
TEST_F(UnknownFieldSetTest, Serialize) {
// Check that serializing the UnknownFieldSet produces the original data
// again.
string data;
empty_message_.SerializeToString(&data);
// Don't use EXPECT_EQ because we don't want to dump raw binary data to
// stdout.
EXPECT_TRUE(data == all_fields_data_);
}
TEST_F(UnknownFieldSetTest, ParseViaReflection) {
// Make sure fields are properly parsed to the UnknownFieldSet when parsing
// via reflection.
unittest::TestEmptyMessage message;
io::ArrayInputStream raw_input(all_fields_data_.data(),
all_fields_data_.size());
io::CodedInputStream input(&raw_input);
ASSERT_TRUE(WireFormat::ParseAndMergePartial(&input, &message));
EXPECT_EQ(message.DebugString(), empty_message_.DebugString());
}
TEST_F(UnknownFieldSetTest, SerializeViaReflection) {
// Make sure fields are properly written from the UnknownFieldSet when
// serializing via reflection.
string data;
{
io::StringOutputStream raw_output(&data);
io::CodedOutputStream output(&raw_output);
int size = WireFormat::ByteSize(empty_message_);
WireFormat::SerializeWithCachedSizes(empty_message_, size, &output);
ASSERT_FALSE(output.HadError());
}
// Don't use EXPECT_EQ because we don't want to dump raw binary data to
// stdout.
EXPECT_TRUE(data == all_fields_data_);
}
TEST_F(UnknownFieldSetTest, CopyFrom) {
unittest::TestEmptyMessage message;
message.CopyFrom(empty_message_);
EXPECT_EQ(empty_message_.DebugString(), message.DebugString());
}
TEST_F(UnknownFieldSetTest, Swap) {
unittest::TestEmptyMessage other_message;
ASSERT_TRUE(other_message.ParseFromString(GetBizarroData()));
EXPECT_GT(empty_message_.unknown_fields().field_count(), 0);
EXPECT_GT(other_message.unknown_fields().field_count(), 0);
const string debug_string = empty_message_.DebugString();
const string other_debug_string = other_message.DebugString();
EXPECT_NE(debug_string, other_debug_string);
empty_message_.Swap(&other_message);
EXPECT_EQ(debug_string, other_message.DebugString());
EXPECT_EQ(other_debug_string, empty_message_.DebugString());
}
TEST_F(UnknownFieldSetTest, SwapWithSelf) {
const string debug_string = empty_message_.DebugString();
EXPECT_GT(empty_message_.unknown_fields().field_count(), 0);
empty_message_.Swap(&empty_message_);
EXPECT_GT(empty_message_.unknown_fields().field_count(), 0);
EXPECT_EQ(debug_string, empty_message_.DebugString());
}
TEST_F(UnknownFieldSetTest, MergeFrom) {
unittest::TestEmptyMessage source, destination;
destination.mutable_unknown_fields()->AddVarint(1, 1);
destination.mutable_unknown_fields()->AddVarint(3, 2);
source.mutable_unknown_fields()->AddVarint(2, 3);
source.mutable_unknown_fields()->AddVarint(3, 4);
destination.MergeFrom(source);
EXPECT_EQ(
// Note: The ordering of fields here depends on the ordering of adds
// and merging, above.
"1: 1\n"
"3: 2\n"
"2: 3\n"
"3: 4\n",
destination.DebugString());
}
TEST_F(UnknownFieldSetTest, Clear) {
// Clear the set.
empty_message_.Clear();
EXPECT_EQ(0, unknown_fields_->field_count());
}
TEST_F(UnknownFieldSetTest, ClearAndFreeMemory) {
EXPECT_GT(unknown_fields_->field_count(), 0);
unknown_fields_->ClearAndFreeMemory();
EXPECT_EQ(0, unknown_fields_->field_count());
unknown_fields_->AddVarint(123456, 654321);
EXPECT_EQ(1, unknown_fields_->field_count());
}
TEST_F(UnknownFieldSetTest, ParseKnownAndUnknown) {
// Test mixing known and unknown fields when parsing.
unittest::TestEmptyMessage source;
source.mutable_unknown_fields()->AddVarint(123456, 654321);
string data;
ASSERT_TRUE(source.SerializeToString(&data));
unittest::TestAllTypes destination;
ASSERT_TRUE(destination.ParseFromString(all_fields_data_ + data));
TestUtil::ExpectAllFieldsSet(destination);
ASSERT_EQ(1, destination.unknown_fields().field_count());
ASSERT_EQ(UnknownField::TYPE_VARINT,
destination.unknown_fields().field(0).type());
EXPECT_EQ(654321, destination.unknown_fields().field(0).varint());
}
TEST_F(UnknownFieldSetTest, WrongTypeTreatedAsUnknown) {
// Test that fields of the wrong wire type are treated like unknown fields
// when parsing.
unittest::TestAllTypes all_types_message;
unittest::TestEmptyMessage empty_message;
string bizarro_data = GetBizarroData();
ASSERT_TRUE(all_types_message.ParseFromString(bizarro_data));
ASSERT_TRUE(empty_message.ParseFromString(bizarro_data));
// All fields should have been interpreted as unknown, so the debug strings
// should be the same.
EXPECT_EQ(empty_message.DebugString(), all_types_message.DebugString());
}
TEST_F(UnknownFieldSetTest, WrongTypeTreatedAsUnknownViaReflection) {
// Same as WrongTypeTreatedAsUnknown but via the reflection interface.
unittest::TestAllTypes all_types_message;
unittest::TestEmptyMessage empty_message;
string bizarro_data = GetBizarroData();
io::ArrayInputStream raw_input(bizarro_data.data(), bizarro_data.size());
io::CodedInputStream input(&raw_input);
ASSERT_TRUE(WireFormat::ParseAndMergePartial(&input, &all_types_message));
ASSERT_TRUE(empty_message.ParseFromString(bizarro_data));
EXPECT_EQ(empty_message.DebugString(), all_types_message.DebugString());
}
TEST_F(UnknownFieldSetTest, UnknownExtensions) {
// Make sure fields are properly parsed to the UnknownFieldSet even when
// they are declared as extension numbers.
unittest::TestEmptyMessageWithExtensions message;
ASSERT_TRUE(message.ParseFromString(all_fields_data_));
EXPECT_EQ(message.DebugString(), empty_message_.DebugString());
}
TEST_F(UnknownFieldSetTest, UnknownExtensionsReflection) {
// Same as UnknownExtensions except parsing via reflection.
unittest::TestEmptyMessageWithExtensions message;
io::ArrayInputStream raw_input(all_fields_data_.data(),
all_fields_data_.size());
io::CodedInputStream input(&raw_input);
ASSERT_TRUE(WireFormat::ParseAndMergePartial(&input, &message));
EXPECT_EQ(message.DebugString(), empty_message_.DebugString());
}
TEST_F(UnknownFieldSetTest, WrongExtensionTypeTreatedAsUnknown) {
// Test that fields of the wrong wire type are treated like unknown fields
// when parsing extensions.
unittest::TestAllExtensions all_extensions_message;
unittest::TestEmptyMessage empty_message;
string bizarro_data = GetBizarroData();
ASSERT_TRUE(all_extensions_message.ParseFromString(bizarro_data));
ASSERT_TRUE(empty_message.ParseFromString(bizarro_data));
// All fields should have been interpreted as unknown, so the debug strings
// should be the same.
EXPECT_EQ(empty_message.DebugString(), all_extensions_message.DebugString());
}
TEST_F(UnknownFieldSetTest, UnknownEnumValue) {
using unittest::TestAllTypes;
using unittest::TestAllExtensions;
using unittest::TestEmptyMessage;
const FieldDescriptor* singular_field =
TestAllTypes::descriptor()->FindFieldByName("optional_nested_enum");
const FieldDescriptor* repeated_field =
TestAllTypes::descriptor()->FindFieldByName("repeated_nested_enum");
ASSERT_TRUE(singular_field != NULL);
ASSERT_TRUE(repeated_field != NULL);
string data;
{
TestEmptyMessage empty_message;
UnknownFieldSet* unknown_fields = empty_message.mutable_unknown_fields();
unknown_fields->AddVarint(singular_field->number(), TestAllTypes::BAR);
unknown_fields->AddVarint(singular_field->number(), 5); // not valid
unknown_fields->AddVarint(repeated_field->number(), TestAllTypes::FOO);
unknown_fields->AddVarint(repeated_field->number(), 4); // not valid
unknown_fields->AddVarint(repeated_field->number(), TestAllTypes::BAZ);
unknown_fields->AddVarint(repeated_field->number(), 6); // not valid
empty_message.SerializeToString(&data);
}
{
TestAllTypes message;
ASSERT_TRUE(message.ParseFromString(data));
EXPECT_EQ(TestAllTypes::BAR, message.optional_nested_enum());
ASSERT_EQ(2, message.repeated_nested_enum_size());
EXPECT_EQ(TestAllTypes::FOO, message.repeated_nested_enum(0));
EXPECT_EQ(TestAllTypes::BAZ, message.repeated_nested_enum(1));
const UnknownFieldSet& unknown_fields = message.unknown_fields();
ASSERT_EQ(3, unknown_fields.field_count());
EXPECT_EQ(singular_field->number(), unknown_fields.field(0).number());
ASSERT_EQ(UnknownField::TYPE_VARINT, unknown_fields.field(0).type());
EXPECT_EQ(5, unknown_fields.field(0).varint());
EXPECT_EQ(repeated_field->number(), unknown_fields.field(1).number());
ASSERT_EQ(UnknownField::TYPE_VARINT, unknown_fields.field(1).type());
EXPECT_EQ(4, unknown_fields.field(1).varint());
EXPECT_EQ(repeated_field->number(), unknown_fields.field(2).number());
ASSERT_EQ(UnknownField::TYPE_VARINT, unknown_fields.field(2).type());
EXPECT_EQ(6, unknown_fields.field(2).varint());
}
{
using unittest::optional_nested_enum_extension;
using unittest::repeated_nested_enum_extension;
TestAllExtensions message;
ASSERT_TRUE(message.ParseFromString(data));
EXPECT_EQ(TestAllTypes::BAR,
message.GetExtension(optional_nested_enum_extension));
ASSERT_EQ(2, message.ExtensionSize(repeated_nested_enum_extension));
EXPECT_EQ(TestAllTypes::FOO,
message.GetExtension(repeated_nested_enum_extension, 0));
EXPECT_EQ(TestAllTypes::BAZ,
message.GetExtension(repeated_nested_enum_extension, 1));
const UnknownFieldSet& unknown_fields = message.unknown_fields();
ASSERT_EQ(3, unknown_fields.field_count());
EXPECT_EQ(singular_field->number(), unknown_fields.field(0).number());
ASSERT_EQ(UnknownField::TYPE_VARINT, unknown_fields.field(0).type());
EXPECT_EQ(5, unknown_fields.field(0).varint());
EXPECT_EQ(repeated_field->number(), unknown_fields.field(1).number());
ASSERT_EQ(UnknownField::TYPE_VARINT, unknown_fields.field(1).type());
EXPECT_EQ(4, unknown_fields.field(1).varint());
EXPECT_EQ(repeated_field->number(), unknown_fields.field(2).number());
ASSERT_EQ(UnknownField::TYPE_VARINT, unknown_fields.field(2).type());
EXPECT_EQ(6, unknown_fields.field(2).varint());
}
}
TEST_F(UnknownFieldSetTest, SpaceUsedExcludingSelf) {
UnknownFieldSet empty;
empty.AddVarint(1, 0);
EXPECT_EQ(sizeof(std::vector<UnknownField>) + sizeof(UnknownField),
empty.SpaceUsedExcludingSelf());
}
TEST_F(UnknownFieldSetTest, SpaceUsed) {
unittest::TestEmptyMessage empty_message;
// Make sure an unknown field set has zero space used until a field is
// actually added.
int base_size = empty_message.SpaceUsed();
UnknownFieldSet* unknown_fields = empty_message.mutable_unknown_fields();
EXPECT_EQ(base_size, empty_message.SpaceUsed());
// Make sure each thing we add to the set increases the SpaceUsed().
unknown_fields->AddVarint(1, 0);
EXPECT_LT(base_size, empty_message.SpaceUsed());
base_size = empty_message.SpaceUsed();
string* str = unknown_fields->AddLengthDelimited(1);
EXPECT_LT(base_size, empty_message.SpaceUsed());
base_size = empty_message.SpaceUsed();
str->assign(sizeof(string) + 1, 'x');
EXPECT_LT(base_size, empty_message.SpaceUsed());
base_size = empty_message.SpaceUsed();
UnknownFieldSet* group = unknown_fields->AddGroup(1);
EXPECT_LT(base_size, empty_message.SpaceUsed());
base_size = empty_message.SpaceUsed();
group->AddVarint(1, 0);
EXPECT_LT(base_size, empty_message.SpaceUsed());
}
TEST_F(UnknownFieldSetTest, Empty) {
UnknownFieldSet unknown_fields;
EXPECT_TRUE(unknown_fields.empty());
unknown_fields.AddVarint(6, 123);
EXPECT_FALSE(unknown_fields.empty());
unknown_fields.Clear();
EXPECT_TRUE(unknown_fields.empty());
}
TEST_F(UnknownFieldSetTest, DeleteSubrange) {
// Exhaustively test the deletion of every possible subrange in arrays of all
// sizes from 0 through 9.
for (int size = 0; size < 10; ++size) {
for (int num = 0; num <= size; ++num) {
for (int start = 0; start < size - num; ++start) {
// Create a set with "size" fields.
UnknownFieldSet unknown;
for (int i = 0; i < size; ++i) {
unknown.AddFixed32(i, i);
}
// Delete the specified subrange.
unknown.DeleteSubrange(start, num);
// Make sure the resulting field values are still correct.
EXPECT_EQ(size - num, unknown.field_count());
for (int i = 0; i < unknown.field_count(); ++i) {
if (i < start) {
EXPECT_EQ(i, unknown.field(i).fixed32());
} else {
EXPECT_EQ(i + num, unknown.field(i).fixed32());
}
}
}
}
}
}
void CheckDeleteByNumber(const std::vector<int>& field_numbers,
int deleted_number,
const std::vector<int>& expected_field_nubmers) {
UnknownFieldSet unknown_fields;
for (int i = 0; i < field_numbers.size(); ++i) {
unknown_fields.AddFixed32(field_numbers[i], i);
}
unknown_fields.DeleteByNumber(deleted_number);
ASSERT_EQ(expected_field_nubmers.size(), unknown_fields.field_count());
for (int i = 0; i < expected_field_nubmers.size(); ++i) {
EXPECT_EQ(expected_field_nubmers[i],
unknown_fields.field(i).number());
}
}
#define MAKE_VECTOR(x) std::vector<int>(x, x + GOOGLE_ARRAYSIZE(x))
TEST_F(UnknownFieldSetTest, DeleteByNumber) {
CheckDeleteByNumber(std::vector<int>(), 1, std::vector<int>());
static const int kTestFieldNumbers1[] = {1, 2, 3};
static const int kFieldNumberToDelete1 = 1;
static const int kExpectedFieldNumbers1[] = {2, 3};
CheckDeleteByNumber(MAKE_VECTOR(kTestFieldNumbers1), kFieldNumberToDelete1,
MAKE_VECTOR(kExpectedFieldNumbers1));
static const int kTestFieldNumbers2[] = {1, 2, 3};
static const int kFieldNumberToDelete2 = 2;
static const int kExpectedFieldNumbers2[] = {1, 3};
CheckDeleteByNumber(MAKE_VECTOR(kTestFieldNumbers2), kFieldNumberToDelete2,
MAKE_VECTOR(kExpectedFieldNumbers2));
static const int kTestFieldNumbers3[] = {1, 2, 3};
static const int kFieldNumberToDelete3 = 3;
static const int kExpectedFieldNumbers3[] = {1, 2};
CheckDeleteByNumber(MAKE_VECTOR(kTestFieldNumbers3), kFieldNumberToDelete3,
MAKE_VECTOR(kExpectedFieldNumbers3));
static const int kTestFieldNumbers4[] = {1, 2, 1, 4, 1};
static const int kFieldNumberToDelete4 = 1;
static const int kExpectedFieldNumbers4[] = {2, 4};
CheckDeleteByNumber(MAKE_VECTOR(kTestFieldNumbers4), kFieldNumberToDelete4,
MAKE_VECTOR(kExpectedFieldNumbers4));
static const int kTestFieldNumbers5[] = {1, 2, 3, 4, 5};
static const int kFieldNumberToDelete5 = 6;
static const int kExpectedFieldNumbers5[] = {1, 2, 3, 4, 5};
CheckDeleteByNumber(MAKE_VECTOR(kTestFieldNumbers5), kFieldNumberToDelete5,
MAKE_VECTOR(kExpectedFieldNumbers5));
}
#undef MAKE_VECTOR
} // namespace
} // namespace protobuf
} // namespace google