blob: 61b7e5f77e17e8cf6cf48d196ba2b042b22dad4c [file] [log] [blame]
// Part of the Crubit project, under the Apache License v2.0 with LLVM
// Exceptions. See /LICENSE for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
use crate::{BindingsGenerator, GeneratedItem};
use crate::rs_snippet::{
check_by_value, format_generic_params, format_generic_params_replacing_by_self,
should_derive_clone, Lifetime, Mutability, PrimitiveType, RsTypeKind,
};
use arc_anyhow::{Context, Result};
use code_gen_utils::make_rs_ident;
use error_report::{anyhow, bail, ensure};
use ir::*;
use itertools::Itertools;
use once_cell::sync::Lazy;
use proc_macro2::{Ident, TokenStream};
use quote::{format_ident, quote, ToTokens};
use std::collections::{BTreeSet, HashMap, HashSet};
use std::fmt::Write as _;
use std::ptr;
use std::rc::Rc;
/// If we know the original C++ function is codegenned and already compatible
/// with `extern "C"` calling convention we skip creating/calling the C++ thunk
/// since we can call the original C++ directly.
fn can_skip_cc_thunk(db: &dyn BindingsGenerator, func: &Func) -> bool {
// ## Inline functions
//
// Inline functions may not be codegenned in the C++ library since Clang doesn't
// know if Rust calls the function or not. Therefore in order to make inline
// functions callable from Rust we need to generate a C++ file that defines
// a thunk that delegates to the original inline function. When compiled,
// Clang will emit code for this thunk and Rust code will call the
// thunk when the user wants to call the original inline function.
//
// This is not great runtime-performance-wise in regular builds (inline function
// will not be inlined, there will always be a function call), but it is
// correct. ThinLTO builds will be able to see through the thunk and inline
// code across the language boundary. For non-ThinLTO builds we plan to
// implement <internal link> which removes the runtime performance overhead.
if func.is_inline {
return false;
}
// ## Member functions (or descendants) of class templates
//
// A thunk is required to force/guarantee template instantiation.
if func.is_member_or_descendant_of_class_template {
return false;
}
// ## Virtual functions
//
// When calling virtual `A::Method()`, it's not necessarily the case that we'll
// specifically call the concrete `A::Method` impl. For example, if this is
// called on something whose dynamic type is some subclass `B` with an
// overridden `B::Method`, then we'll call that.
//
// We must reuse the C++ dynamic dispatching system. In this case, the easiest
// way to do it is by resorting to a C++ thunk, whose implementation will do
// the lookup.
//
// In terms of runtime performance, since this only occurs for virtual function
// calls, which are already slow, it may not be such a big deal. We can
// benchmark it later. :)
if let Some(meta) = &func.member_func_metadata {
if let Some(inst_meta) = &meta.instance_method_metadata {
if inst_meta.is_virtual {
return false;
}
}
}
// ## Custom calling convention requires a thunk.
//
// The thunk has the "C" calling convention, and internally can call the
// C++ function using any of the calling conventions supported by the C++
// compiler (which might not always match the set supported by Rust - e.g.,
// abi.rs doesn't contain "swiftcall" from
// clang::FunctionType::getNameForCallConv)
if !func.has_c_calling_convention {
return false;
}
// ## Returning structs by value.
//
// Returning a struct by value requires an explicit thunk, because
// `rs_bindings_from_cc` may not preserve the ABI of structs (e.g. when
// replacing field types with an opaque blob of bytes - see b/270454629).
//
// Note: if the RsTypeKind cannot be parsed / rs_type_kind returns Err, then
// bindings generation will fail for this function, so it doesn't really matter
// what we do here.
if let Ok(return_type) = db.rs_type_kind(func.return_type.rs_type.clone()) {
if !return_type.is_c_abi_compatible_by_value() {
return false;
}
}
// ## Nontrivial parameter types.
//
// If the function accepts a struct by value, then in the underlying ABI, it is
// actually passed by pointer.
//
// Because there's no way to upgrade an lvalue (e.g. pointer) to a prvalue, we
// cannot implement guaranteed copy/move elision for inline functions for
// now: any thunk we generate would need to invoke the correct function as
// if by magic.
//
// And so for now, we always use C++11 semantics, via an intermediate thunk.
//
// (As a side effect, this, like return values, means that support is
// ABI-agnostic.)
for param in &func.params {
if let Ok(param_type) = db.rs_type_kind(param.type_.rs_type.clone()) {
if !param_type.is_c_abi_compatible_by_value() {
return false;
}
}
}
true
}
/// Uniquely identifies a generated Rust function.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct FunctionId {
// If the function is on a trait impl, contains the name of the Self type for
// which the trait is being implemented.
self_type: Option<syn::Path>,
// Fully qualified path of the function. For functions in impl blocks, this
// includes the name of the type or trait on which the function is being
// implemented, e.g. `Default::default`.
function_path: syn::Path,
}
/// The name of a one-function trait, with extra entries for
/// specially-understood traits and families of traits.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum TraitName {
/// The constructor trait for !Unpin types, with a list of parameter types.
/// For example, `CtorNew(vec![])` is the default constructor.
CtorNew(Rc<[RsTypeKind]>),
/// An Unpin constructor trait, e.g. From or Clone, with a list of parameter
/// types.
UnpinConstructor {
name: Rc<str>,
// /// Clonable, comparable token stream, which can be copied into a new TokenStream.
// #[repr(transparent)]
// struct TokenArray(Rc<[TokenTree]>);
// // impl From<TokenStream> for TokenArray, From<TokenArray> for TokenStream, PartialEq,
// Eq, Hash, etc.
// This avoids deferred parsing.
// I just can't figure out how to make the equality check not prohibitively ugly:
// impl PartialEq for TokenArray {
// fn eq(&self, other: &TokenArray) {
// struct EqTokenTree<'a>(&'a TokenTree);
// impl PartialEq for EqTokenTree {
// fn eq(&self, other: &EqTokenTree) {
// match (&self.0, &other.0) {
// (Group(g1), Group(g2)) => g1.delimiter() == g2.delimiter(),
// (Ident(i1), Ident(i2)) => i1 == i2,
// (Punct(p1), Punct(p2)) => p1.as_char() == p2.as_char(),
// (Literal(l1), Literal(l2)) => /* can't find a better way to do this */
// l1.to_string() == l2.to_string(), _ => False,
// }
// }
// }
// self.0.iter().map(EqTokenTree).eq(other.0.iter().map(EqTokenTree))
// }
// }
params: Rc<[RsTypeKind]>,
},
/// The PartialEq trait.
PartialEq { params: Rc<[RsTypeKind]> },
/// The PartialOrd trait.
PartialOrd { params: Rc<[RsTypeKind]> },
/// Any other trait, e.g. Eq.
Other { name: Rc<str>, params: Rc<[RsTypeKind]>, is_unsafe_fn: bool },
}
impl TraitName {
/// Returns the generic parameters in this trait name.
fn params(&self) -> impl Iterator<Item = &RsTypeKind> {
match self {
Self::CtorNew(params)
| Self::UnpinConstructor { params, .. }
| Self::PartialEq { params }
| Self::PartialOrd { params }
| Self::Other { params, .. } => params.iter(),
}
}
/// Returns the lifetimes used in this trait name.
pub fn lifetimes(&self) -> impl Iterator<Item = Lifetime> + '_ {
self.params().flat_map(|p| p.lifetimes())
}
/// Similar to to_tokens but removing a given record type from the list of
/// generic args
///
/// This is used to remove the record whose trait implementation is being
/// generated.
fn to_token_stream_removing_trait_record(&self, trait_record: Option<&Record>) -> TokenStream {
match self {
Self::UnpinConstructor { name, params } | Self::Other { name, params, .. } => {
let name_as_token_stream = name.parse::<TokenStream>().unwrap();
let formatted_params =
format_generic_params_replacing_by_self(&**params, trait_record);
quote! {#name_as_token_stream #formatted_params}
}
Self::PartialEq { params } => {
assert_eq!(params.len(), 1, "PartialEq must have a single generic param");
if trait_record.is_some() && params[0].is_record(trait_record.unwrap()) {
quote! {PartialEq}
} else {
let formatted_params =
format_generic_params_replacing_by_self(&**params, trait_record);
quote! {PartialEq #formatted_params}
}
}
Self::PartialOrd { params } => {
assert_eq!(params.len(), 1, "PartialOrd must have a single generic param");
if trait_record.is_some() && params[0].is_record(trait_record.unwrap()) {
quote! {PartialOrd}
} else {
let formatted_params =
format_generic_params_replacing_by_self(&**params, trait_record);
quote! {PartialOrd #formatted_params}
}
}
Self::CtorNew(arg_types) => {
let formatted_arg_types =
format_tuple_except_singleton_replacing_by_self(arg_types, trait_record);
quote! { ::ctor::CtorNew < #formatted_arg_types > }
}
}
}
}
impl ToTokens for TraitName {
fn to_tokens(&self, tokens: &mut TokenStream) {
self.to_token_stream_removing_trait_record(None).to_tokens(tokens)
}
}
/// The kind of the `impl` block the function needs to be generated in.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ImplKind {
/// Used for free functions for which we don't want the `impl` block.
None { is_unsafe: bool },
/// Used for inherent methods for which we need an `impl SomeStruct { ... }`
/// block.
Struct {
/// For example, `SomeStruct`.
record: Rc<Record>,
is_unsafe: bool,
/// Whether to format the first parameter as "self" (e.g. `__this:
/// &mut T` -> `&mut self`)
format_first_param_as_self: bool,
},
/// Used for trait methods for which we need an `impl TraitName for
/// SomeStruct { ... }` block.
Trait {
/// For example, `SomeStruct`.
record: Rc<Record>,
/// For example, `quote!{ From<i32> }`.
trait_name: TraitName,
/// Reference style for the `impl` block and self parameters.
impl_for: ImplFor,
/// The generic params of trait `impl` (e.g. `vec!['b]`).
/// These start empty and only later are mutated into the
/// correct value.
trait_generic_params: Rc<[Lifetime]>,
/// Whether to format the first parameter as "self" (e.g. `__this:
/// &mut T` -> `&mut self`)
format_first_param_as_self: bool,
/// Whether to drop the C++ function's return value and return unit
/// instead.
drop_return: bool,
/// If this trait's method returns an associated type, it has this name.
/// For example, this is `Output` on
/// [`Add`](https://doc.rust-lang.org/std/ops/trait.Add.html).
associated_return_type: Option<Ident>,
/// Whether args should always be const references in Rust, even if they
/// are by value in C++.
///
/// For example, the traits for == and < only accept const reference
/// parameters, but C++ allows values.
force_const_reference_params: bool,
},
}
impl ImplKind {
fn new_trait(
trait_name: TraitName,
record: Rc<Record>,
format_first_param_as_self: bool,
force_const_reference_params: bool,
) -> Result<Self> {
Ok(ImplKind::Trait {
record,
trait_name,
impl_for: ImplFor::T,
trait_generic_params: Rc::new([]),
format_first_param_as_self,
drop_return: false,
associated_return_type: None,
force_const_reference_params,
})
}
fn format_first_param_as_self(&self) -> bool {
matches!(
self,
Self::Trait { format_first_param_as_self: true, .. }
| Self::Struct { format_first_param_as_self: true, .. }
)
}
/// Returns whether the function is defined as `unsafe fn ...`.
fn is_unsafe(&self) -> bool {
matches!(
self,
Self::None { is_unsafe: true, .. }
| Self::Struct { is_unsafe: true, .. }
| Self::Trait { trait_name: TraitName::Other { is_unsafe_fn: true, .. }, .. }
)
}
}
/// Whether the impl block is for T, and the receivers take self by reference,
/// or the impl block is for a reference to T, and the method receivers take
/// self by value.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ImplFor {
/// Implement the trait for `T` directly.
///
/// ```
/// impl Trait for T {
/// fn const_method<'a>(&'a self);
/// fn mut_method<'a>(&'a mut self);
/// fn pin_method<'a>(Pin<&'a mut self>);
/// }
/// ```
T,
/// Implement the trait for `&T`, `&mut T`, or `Pin<&mut T>`, depending on
/// the Rust type of the self parameter.
///
/// ```
/// impl<'a> Trait for &'a T {
/// fn const_method(self);
/// }
/// impl<'a> Trait for &'a mut UnpinT {
/// fn mut_method(self);
/// }
/// impl<'a> Trait for Pin<&'a mut NonUnpinT> {
/// fn pin_method(self);
/// }
/// ```
RefT,
}
/// Returns whether an argument of this type causes ADL to include the `record`.
fn adl_expands_to(record: &Record, rs_type_kind: &RsTypeKind) -> bool {
match rs_type_kind {
RsTypeKind::Record { record: nested_record, .. } => ptr::eq(record, &**nested_record),
RsTypeKind::Reference { referent, .. } => adl_expands_to(record, referent),
RsTypeKind::RvalueReference { referent, .. } => adl_expands_to(record, referent),
_ => false,
}
}
/// Returns whether any type in `param_types` causes ADL to include `record`.
///
/// This is an under-approximation. Things not considered include class template
/// arguments and the parameters and return type of function types.
///
/// See https://en.cppreference.com/w/cpp/language/adl
fn is_visible_by_adl(enclosing_record: &Record, param_types: &[RsTypeKind]) -> bool {
param_types.iter().any(|param_type| adl_expands_to(enclosing_record, param_type))
}
#[derive(Debug)]
struct OperatorMetadata {
by_cc_name_and_params: HashMap<(&'static str, usize), OperatorMetadataEntry>,
}
#[derive(Clone, Copy, Debug)]
struct OperatorMetadataEntry {
cc_name: &'static str,
cc_params: usize,
trait_name: &'static str,
method_name: &'static str,
is_compound_assignment: bool,
}
impl OperatorMetadataEntry {
const fn unary(
cc_name: &'static str,
trait_name: &'static str,
method_name: &'static str,
) -> Self {
Self { cc_name, cc_params: 1, trait_name, method_name, is_compound_assignment: false }
}
const fn binary(
cc_name: &'static str,
trait_name: &'static str,
method_name: &'static str,
) -> Self {
Self { cc_name, cc_params: 2, trait_name, method_name, is_compound_assignment: false }
}
const fn assign(
cc_name: &'static str,
trait_name: &'static str,
method_name: &'static str,
) -> Self {
Self { cc_name, cc_params: 2, trait_name, method_name, is_compound_assignment: true }
}
}
static OPERATOR_METADATA: Lazy<OperatorMetadata> = Lazy::new(|| {
const ENTRIES: &[OperatorMetadataEntry] = &[
OperatorMetadataEntry::unary("-", "Neg", "neg"),
// The Rust `Not` trait matches with both the C++ `!` and `~` operators to some extent. The
// two operators appear with similar frequency in our target codebase so it's not clear
// which is better to map here. Mapping `operator!` to `Not` as chosen here means that a
// C++ `!` matches up with a Rust `!`.
OperatorMetadataEntry::unary("!", "Not", "not"),
OperatorMetadataEntry::binary("+", "Add", "add"),
OperatorMetadataEntry::binary("-", "Sub", "sub"),
OperatorMetadataEntry::binary("*", "Mul", "mul"),
OperatorMetadataEntry::binary("/", "Div", "div"),
OperatorMetadataEntry::binary("%", "Rem", "rem"),
OperatorMetadataEntry::binary("&", "BitAnd", "bitand"),
OperatorMetadataEntry::binary("|", "BitOr", "bitor"),
OperatorMetadataEntry::binary("^", "BitXor", "bitxor"),
OperatorMetadataEntry::binary("<<", "Shl", "shl"),
OperatorMetadataEntry::binary(">>", "Shr", "shr"),
OperatorMetadataEntry::assign("+=", "AddAssign", "add_assign"),
OperatorMetadataEntry::assign("-=", "SubAssign", "sub_assign"),
OperatorMetadataEntry::assign("*=", "MulAssign", "mul_assign"),
OperatorMetadataEntry::assign("/=", "DivAssign", "div_assign"),
OperatorMetadataEntry::assign("%=", "RemAssign", "rem_assign"),
OperatorMetadataEntry::assign("&=", "BitAndAssign", "bitand_assign"),
OperatorMetadataEntry::assign("|=", "BitOrAssign", "bitor_assign"),
OperatorMetadataEntry::assign("^=", "BitXorAssign", "bitxor_assign"),
OperatorMetadataEntry::assign("<<=", "ShlAssign", "shl_assign"),
OperatorMetadataEntry::assign(">>=", "ShrAssign", "shr_assign"),
];
OperatorMetadata {
by_cc_name_and_params: ENTRIES.iter().map(|e| ((e.cc_name, e.cc_params), *e)).collect(),
}
});
/// Returns the shape of the generated Rust API for a given function definition.
///
/// If the shape is a trait, this also mutates the parameter types to be
/// trait-compatible. In particular, types which would be `impl Ctor<Output=T>`
/// become a `RvalueReference<'_, T>`.
///
/// Returns:
///
/// * `Err(_)`: something went wrong importing this function.
/// * `Ok(None)`: the function imported as "nothing". (For example, a defaulted
/// destructor might be mapped to no `Drop` impl at all.)
/// * `Ok((func_name, impl_kind))`: The function name and ImplKind.
fn api_func_shape(
db: &dyn BindingsGenerator,
func: &Func,
param_types: &mut [RsTypeKind],
) -> Result<Option<(Ident, ImplKind)>> {
let ir = db.ir();
let op_meta = &*OPERATOR_METADATA;
let maybe_record = match ir.record_for_member_func(func).map(<&Rc<Record>>::try_from) {
None => None,
Some(Ok(record)) => Some(record),
// Functions whose record was replaced with some other IR Item type are ignored.
// This occurs for instance if you use crubit_internal_rust_type: member functions defined
// out-of-line, such as implicitly generated constructors, will still be present in the IR,
// but should be ignored.
Some(Err(_)) => return Ok(None),
};
let is_unsafe = param_types.iter().any(|p| p.is_unsafe());
let impl_kind: ImplKind;
let func_name: syn::Ident;
let adl_check_required_and_failed = if let Some(decl_id) = func.adl_enclosing_record {
let adl_enclosing_record = ir
.find_decl::<Rc<Record>>(decl_id)
.with_context(|| format!("Failed to look up `adl_enclosing_record` of {:?}", func))?;
!is_visible_by_adl(adl_enclosing_record, param_types)
} else {
false
};
match &func.name {
UnqualifiedIdentifier::Operator(_) | UnqualifiedIdentifier::Identifier(_)
if adl_check_required_and_failed =>
{
return Ok(None);
}
UnqualifiedIdentifier::Operator(op) if op.name.as_ref() == "==" => {
assert_eq!(
param_types.len(),
2,
"Unexpected number of parameters in operator==: {func:?}"
);
let lhs_record = match &param_types[0] {
RsTypeKind::Reference { referent: lhs, mutability: Mutability::Const, .. } => {
if let RsTypeKind::Record { record: lhs_record, .. } = &**lhs {
lhs_record
} else {
bail!(
"operator== where lhs param is reference that doesn't refer to a record",
);
}
}
RsTypeKind::Record { record: lhs_record, .. } => lhs_record,
_ => bail!(
"operator== where lhs operand is not record nor const reference to record"
),
};
let params = match &param_types[1] {
RsTypeKind::Reference { referent: rhs, mutability: Mutability::Const, .. } => {
if let RsTypeKind::Record { .. } = &**rhs {
vec![(**rhs).clone()]
} else {
bail!(
"operator== where rhs param is reference that doesn't refer to a record",
);
}
}
record @ RsTypeKind::Record { .. } => vec![record.clone()],
_ => bail!(
"operator== where rhs operand is not record nor const reference to record"
),
};
func_name = make_rs_ident("eq");
impl_kind = ImplKind::new_trait(
TraitName::PartialEq { params: Rc::from(params) },
lhs_record.clone(),
/* format_first_param_as_self= */ true,
/* force_const_reference_params= */ true,
)?;
}
UnqualifiedIdentifier::Operator(op) if op.name.as_ref() == "<=>" => {
bail!("Three-way comparison operator not yet supported (b/219827738)");
}
UnqualifiedIdentifier::Operator(op) if op.name.as_ref() == "<" => {
assert_eq!(
param_types.len(),
2,
"Unexpected number of parameters in operator<: {func:?}"
);
let lhs_record = match &param_types[0] {
RsTypeKind::Reference { referent: lhs, mutability: Mutability::Const, .. } => {
if let RsTypeKind::Record { record: lhs_record, .. } = &**lhs {
lhs_record
} else {
bail!(
"operator== where lhs param is reference that doesn't refer to a record",
);
}
}
RsTypeKind::Record { record: lhs_record, .. } => lhs_record,
_ => {
bail!("operator< where lhs operand is not record nor const reference to record")
}
};
let (rhs_record, params) = match &param_types[1] {
RsTypeKind::Reference { referent: rhs, mutability: Mutability::Const, .. } => {
if let RsTypeKind::Record { record: rhs_record, .. } = &**rhs {
(rhs_record, vec![(**rhs).clone()])
} else {
bail!(
"operator== where rhs param is reference that doesn't refer to a record",
);
}
}
record @ RsTypeKind::Record { record: rhs_record, .. } => {
(rhs_record, vec![record.clone()])
}
_ => {
bail!("operator< where rhs operand is not record nor const reference to record")
}
};
// Even though Rust and C++ allow operator< to be implemented on different
// types, we don't generate bindings for them at this moment. The
// issue is that our canonical implementation of partial_cmp relies
// on transitivity. This would require checking that both lt(&T1,
// &T2) and lt(&T2, &T1) are implemented. In other words, both lt
// implementations would need to query for the existence of the other, which
// would create a cyclic dependency.
if lhs_record != rhs_record {
bail!("operator< where lhs and rhs are not the same type.");
}
// PartialOrd requires PartialEq, so we need to make sure operator== is
// implemented for this Record type.
match get_binding(
db,
UnqualifiedIdentifier::Operator(Operator { name: Rc::from("==") }),
param_types.to_vec(),
) {
Some((_, ImplKind::Trait { trait_name: TraitName::PartialEq { .. }, .. })) => {
func_name = make_rs_ident("lt");
impl_kind = ImplKind::new_trait(
TraitName::PartialOrd { params: Rc::from(params) },
lhs_record.clone(),
/* format_first_param_as_self= */
true,
/* force_const_reference_params= */ true,
)?;
}
_ => bail!("operator< where operator== is missing."),
}
}
UnqualifiedIdentifier::Operator(op) if op.name.as_ref() == "=" => {
assert_eq!(
param_types.len(),
2,
"Unexpected number of parameters in operator=: {func:?}"
);
let record =
maybe_record.ok_or_else(|| anyhow!("operator= must be a member function."))?;
materialize_ctor_in_caller(func, param_types);
let rhs = &param_types[1];
// TODO(b/219963671): consolidate UnpinAssign and Assign in ctor.rs
let trait_name;
if record.is_unpin() {
trait_name = Rc::from("::ctor::UnpinAssign");
func_name = make_rs_ident("unpin_assign");
} else {
trait_name = Rc::from("::ctor::Assign");
func_name = make_rs_ident("assign")
};
impl_kind = {
ImplKind::Trait {
record: record.clone(),
trait_name: TraitName::Other {
name: trait_name,
params: Rc::new([rhs.clone()]),
is_unsafe_fn: false,
},
impl_for: ImplFor::T,
trait_generic_params: Rc::new([]),
format_first_param_as_self: true,
drop_return: true,
associated_return_type: None,
force_const_reference_params: false,
}
};
}
UnqualifiedIdentifier::Operator(op) => match op_meta
.by_cc_name_and_params
.get(&(&op.name, param_types.len()))
{
Some(OperatorMetadataEntry {
trait_name,
method_name,
is_compound_assignment: false,
..
}) => {
materialize_ctor_in_caller(func, param_types);
let (record, impl_for) = match &param_types[0] {
RsTypeKind::Record { record, .. } => (record, ImplFor::T),
RsTypeKind::Reference { referent, .. } => (
match &**referent {
RsTypeKind::Record { record, .. } => record,
_ => bail!("Expected first parameter referent to be a record"),
},
ImplFor::RefT,
),
RsTypeKind::RvalueReference { .. } => {
bail!("Not yet supported for rvalue references (b/219826128)")
}
_ => bail!("Expected first parameter to be a record or reference"),
};
impl_kind = ImplKind::Trait {
record: record.clone(),
trait_name: TraitName::Other {
name: Rc::from(format!("::core::ops::{trait_name}")),
params: Rc::from(&param_types[1..]),
is_unsafe_fn: false,
},
impl_for,
trait_generic_params: Rc::new([]),
format_first_param_as_self: true,
drop_return: false,
associated_return_type: Some(make_rs_ident("Output")),
force_const_reference_params: false,
};
func_name = make_rs_ident(method_name);
}
Some(OperatorMetadataEntry {
trait_name,
method_name,
is_compound_assignment: true,
..
}) => {
materialize_ctor_in_caller(func, param_types);
let record = match &param_types[0] {
RsTypeKind::Record { .. } => {
bail!("Compound assignment with by-value left-hand side is not supported")
}
RsTypeKind::Reference { mutability: Mutability::Const, .. } => {
bail!("Compound assignment with const left-hand side is not supported")
}
RsTypeKind::Reference { referent, mutability: Mutability::Mut, .. } => {
match &**referent {
RsTypeKind::Record { record, .. } => maybe_record.unwrap_or(record),
_ => bail!("Expected first parameter referent to be a record"),
}
}
RsTypeKind::RvalueReference { .. } => {
bail!("Not yet supported for rvalue references (b/219826128)")
}
RsTypeKind::Pointer { .. } => {
bail!("Not yet supported for pointers with unknown lifetime (b/219826128)")
}
_ => bail!("Expected first parameter to be a record or reference"),
};
ensure!(
record.is_unpin(),
"Compound assignment operators are not supported for non-Unpin types);",
);
impl_kind = ImplKind::Trait {
record: record.clone(),
trait_name: TraitName::Other {
name: Rc::from(format!("::core::ops::{trait_name}")),
params: Rc::from(&param_types[1..]),
is_unsafe_fn: false,
},
impl_for: ImplFor::T,
trait_generic_params: Rc::new([]),
format_first_param_as_self: true,
drop_return: true,
associated_return_type: None,
force_const_reference_params: false,
};
func_name = make_rs_ident(method_name);
}
None => {
bail!(
"Bindings for this kind of operator (operator {op} with {n} parameter(s)) are not supported",
op = &op.name,
n = param_types.len(),
);
}
},
UnqualifiedIdentifier::Identifier(id) => {
func_name = make_rs_ident(&id.identifier);
match maybe_record {
None => {
impl_kind = ImplKind::None { is_unsafe };
}
Some(record) => {
let format_first_param_as_self = if func.is_instance_method() {
let first_param = param_types.first().ok_or_else(|| {
anyhow!("Missing `__this` parameter in an instance method: {:?}", func)
})?;
first_param.is_ref_to(record)
} else {
false
};
impl_kind = ImplKind::Struct {
record: record.clone(),
format_first_param_as_self,
is_unsafe,
};
}
};
}
UnqualifiedIdentifier::Destructor => {
// Note: to avoid double-destruction of the fields, they are all wrapped in
// ManuallyDrop in this case. See `generate_record`.
let record =
maybe_record.ok_or_else(|| anyhow!("Destructors must be member functions."))?;
if !crate::generate_record::should_implement_drop(record) {
return Ok(None);
}
if record.is_unpin() {
impl_kind = ImplKind::new_trait(
TraitName::Other {
name: Rc::from("Drop"),
params: Rc::from([]),
is_unsafe_fn: false,
},
record.clone(),
/* format_first_param_as_self= */ true,
/* force_const_reference_params= */
false,
)?;
func_name = make_rs_ident("drop");
} else {
materialize_ctor_in_caller(func, param_types);
impl_kind = ImplKind::new_trait(
TraitName::Other {
name: Rc::from("::ctor::PinnedDrop"),
params: Rc::from([]),
is_unsafe_fn: true,
},
record.clone(),
/* format_first_param_as_self= */ true,
/* force_const_reference_params= */ false,
)?;
func_name = make_rs_ident("pinned_drop");
}
}
UnqualifiedIdentifier::Constructor => {
let record = maybe_record
.ok_or_else(|| anyhow!("Constructors must be associated with a record."))?;
if is_unsafe {
// TODO(b/216648347): Allow this outside of traits (e.g. after supporting
// translating C++ constructors into static methods in Rust).
bail!(
"Unsafe constructors (e.g. with no elided or explicit lifetimes) \
are intentionally not supported",
);
}
check_by_value(record)?;
materialize_ctor_in_caller(func, param_types);
if !record.is_unpin() {
func_name = make_rs_ident("ctor_new");
match param_types {
[] => bail!("Missing `__this` parameter in a constructor: {:?}", func),
[_this, params @ ..] => {
impl_kind = ImplKind::Trait {
record: record.clone(),
trait_name: TraitName::CtorNew(params.iter().cloned().collect()),
impl_for: ImplFor::T,
trait_generic_params: Rc::new([]),
format_first_param_as_self: false,
drop_return: false,
associated_return_type: Some(make_rs_ident("CtorType")),
force_const_reference_params: false,
};
}
}
} else {
match func.params.len() {
0 => bail!("Missing `__this` parameter in a constructor: {:?}", func),
1 => {
impl_kind = ImplKind::new_trait(
TraitName::UnpinConstructor {
name: Rc::from("Default"),
params: Rc::from([]),
},
record.clone(),
/* format_first_param_as_self= */ false,
/* force_const_reference_params= */ false,
)?;
func_name = make_rs_ident("default");
}
2 => {
if param_types[1].is_shared_ref_to(record) {
// Copy constructor
if should_derive_clone(record) {
return Ok(None);
} else {
impl_kind = ImplKind::new_trait(
TraitName::UnpinConstructor {
name: Rc::from("Clone"),
params: Rc::from([]),
},
record.clone(),
/* format_first_param_as_self= */ true,
/* force_const_reference_params= */ false,
)?;
func_name = make_rs_ident("clone");
}
} else {
let param_type = &param_types[1];
impl_kind = ImplKind::new_trait(
TraitName::UnpinConstructor {
name: Rc::from("From"),
params: Rc::from([param_type.clone()]),
},
record.clone(),
/* format_first_param_as_self= */ false,
/* force_const_reference_params= */
false,
)?;
func_name = make_rs_ident("from");
}
}
_ => {
// TODO(b/216648347): Support bindings for other constructors.
bail!("More than 1 constructor parameter is not supported yet",);
}
}
}
}
}
Ok(Some((func_name, impl_kind)))
}
/// Returns the generated bindings for a function with the given name and param
/// types. If none exists, returns None.
pub fn get_binding(
db: &dyn BindingsGenerator,
expected_function_name: UnqualifiedIdentifier,
expected_param_types: Vec<RsTypeKind>,
) -> Option<(Ident, ImplKind)> {
db.ir()
.get_functions_by_name(&expected_function_name)
.filter(|function| generate_func(db, (*function).clone()).ok().flatten().is_some())
.find_map(|function| {
let mut function_param_types = function
.params
.iter()
.map(|param| db.rs_type_kind(param.type_.rs_type.clone()))
.collect::<Result<Vec<_>>>()
.ok()?;
if !function_param_types.iter().eq(expected_param_types.iter()) {
return None;
}
api_func_shape(db, function, &mut function_param_types).ok().flatten()
})
}
/// Returns whether the given record either implements or derives the Clone
/// trait.
pub fn is_record_clonable(db: &dyn BindingsGenerator, record: Rc<Record>) -> bool {
if !record.is_unpin() {
return false;
}
should_derive_clone(&record)
|| db
.ir()
.get_functions_by_name(&UnqualifiedIdentifier::Constructor)
.filter(|function| {
// __this is always the first parameter of constructors
function.params.len() == 2
})
.any(|function| {
let mut function_param_types = function
.params
.iter()
.map(|param| db.rs_type_kind(param.type_.rs_type.clone()))
.collect::<Result<Vec<_>>>()
.unwrap_or_default();
if function.params.len() != 2 || !function_param_types[1].is_shared_ref_to(&record)
{
return false;
}
api_func_shape(db, function, &mut function_param_types)
.ok()
.flatten()
.map_or(false, |(func_name, _)| func_name == *"clone")
})
}
/// Mutates the provided parameters so that nontrivial by-value parameters are,
/// instead, materialized in the caller and passed by rvalue reference.
fn materialize_ctor_in_caller(func: &Func, params: &mut [RsTypeKind]) {
let mut existing_lifetime_params: HashSet<Rc<str>> =
params.iter().flat_map(|param| param.lifetimes().map(|lifetime| lifetime.0)).collect();
let mut new_lifetime_param = |mut lifetime_name: String| {
let suffix_start = lifetime_name.len();
let mut next_suffix = 2;
loop {
if !existing_lifetime_params.contains(&*lifetime_name) {
let lifetime_name = <Rc<str>>::from(lifetime_name);
existing_lifetime_params.insert(lifetime_name.clone());
return Lifetime(lifetime_name);
}
lifetime_name.truncate(suffix_start);
write!(lifetime_name, "_{next_suffix}").unwrap();
next_suffix += 1;
}
};
for (func_param, param) in func.params.iter().zip(params.iter_mut()) {
if param.is_unpin() {
continue;
}
let value = std::mem::replace(param, RsTypeKind::Primitive(PrimitiveType::Unit)); // Temporarily swap in a garbage value.
*param = RsTypeKind::RvalueReference {
referent: Rc::new(value),
mutability: Mutability::Mut,
lifetime: new_lifetime_param(func_param.identifier.identifier.to_string()),
};
}
}
/// Generates Rust source code for a given `Func`.
///
/// Returns:
///
/// * `Err(_)`: couldn't import the function, emit an `UnsupportedItem`.
/// * `Ok(None)`: the function imported as "nothing". (For example, a defaulted
/// destructor might be mapped to no `Drop` impl at all.)
/// * `Ok((rs_api, rs_thunk, function_id))`: The Rust function definition,
/// thunk FFI definition, and function ID.
pub fn generate_func(
db: &dyn BindingsGenerator,
func: Rc<Func>,
) -> Result<Option<(Rc<GeneratedItem>, Rc<FunctionId>)>> {
let ir = db.ir();
let crate_root_path = crate::crate_root_path_tokens(&ir);
let mut features = BTreeSet::new();
let mut param_types = func
.params
.iter()
.enumerate()
.map(|(i, p)| {
db.rs_type_kind(p.type_.rs_type.clone())
.with_context(|| format!("Failed to format type of parameter {i}"))
})
.collect::<Result<Vec<_>>>()?;
let (func_name, mut impl_kind) =
if let Some(values) = api_func_shape(db, &func, &mut param_types)? {
values
} else {
return Ok(None);
};
let namespace_qualifier = ir.namespace_qualifier(&func)?.format_for_rs();
let mut return_type = db
.rs_type_kind(func.return_type.rs_type.clone())
.with_context(|| "Failed to format return type")?;
return_type.check_by_value()?;
let param_idents =
func.params.iter().map(|p| make_rs_ident(&p.identifier.identifier)).collect_vec();
let thunk = generate_func_thunk(db, &func, &param_idents, &param_types, &return_type)?;
// If the Rust trait require a function to take the params by const reference
// and the thunk takes some of its params by value then we should add a const
// reference around these Rust func params and clone the records when calling
// the thunk. Since some params might require cloning while others don't, we
// need to store this information for each param.
let (mut param_types, clone_prefixes, clone_suffixes) = if let ImplKind::Trait {
force_const_reference_params: true,
..
} = impl_kind
{
let mut clone_prefixes = Vec::with_capacity(param_types.len());
let mut clone_suffixes = Vec::with_capacity(param_types.len());
(
param_types
.into_iter()
.map(|param_type|
{if let RsTypeKind::Record { record: param_record, .. } = &param_type {
if !is_record_clonable(db, param_record.clone()) {
bail!(
"function requires const ref params in Rust but C++ takes non-cloneable record {:?} by value {:?}",
param_record,
func,
);
}
clone_prefixes.push(quote!{&mut});
clone_suffixes.push(quote!{.clone()});
Ok(RsTypeKind::Reference {
referent: Rc::new(param_type.clone()),
mutability: Mutability::Const,
lifetime: Lifetime::new("_"),
})
} else {
clone_prefixes.push(quote!{});
clone_suffixes.push(quote!{});
Ok(param_type)
}})
.collect::<Result<Vec<_>>>()?,
clone_prefixes,
clone_suffixes,
)
} else {
let empty_clone_snippets = vec![quote! {}; param_types.len()];
(param_types, empty_clone_snippets.clone(), empty_clone_snippets)
};
let BindingsSignature {
lifetimes,
params: api_params,
return_type_fragment: mut quoted_return_type,
thunk_prepare,
thunk_args,
} = function_signature(
&mut features,
&func,
&impl_kind,
&param_idents,
&mut param_types,
&mut return_type,
)?;
let api_func_def = {
let thunk_ident = thunk_ident(&func);
let func_body = match &impl_kind {
ImplKind::Trait { trait_name: TraitName::UnpinConstructor { .. }, .. } => {
// SAFETY: A user-defined constructor is not guaranteed to
// initialize all the fields. To make the `assume_init()` call
// below safe, the memory is zero-initialized first. This is a
// bit safer, because zero-initialized memory represents a valid
// value for the currently supported field types (this may
// change once the bindings generator starts supporting
// reference fields). TODO(b/213243309): Double-check if
// zero-initialization is desirable here.
quote! {
let mut tmp = ::core::mem::MaybeUninit::<Self>::zeroed();
unsafe {
#crate_root_path::detail::#thunk_ident( &mut tmp #( , #thunk_args )* );
tmp.assume_init()
}
}
}
_ => {
// Note: for the time being, all !Unpin values are treated as if they were not
// trivially relocatable. We could, in the special case of trivial !Unpin types,
// not generate the thunk at all, but this would be a bit of extra work.
//
// TODO(jeanpierreda): separately handle non-Unpin and non-trivial types.
let mut body = if return_type.is_c_abi_compatible_by_value() {
quote! {
#crate_root_path::detail::#thunk_ident(
#( #clone_prefixes #thunk_args #clone_suffixes ),*
)
}
} else {
let return_type_or_self = {
let record = match impl_kind {
ImplKind::Struct { ref record, .. }
| ImplKind::Trait { ref record, impl_for: ImplFor::T, .. } => {
Some(&**record)
}
_ => None,
};
return_type.to_token_stream_replacing_by_self(record)
};
if return_type.is_unpin() {
quote! {
let mut __return =
::core::mem::MaybeUninit::<#return_type_or_self>::uninit();
#crate_root_path::detail::#thunk_ident(
&mut __return
#( , #clone_prefixes #thunk_args #clone_suffixes )*
);
__return.assume_init()
}
} else {
// TODO(b/200067242): the Pin-wrapping code doesn't know to wrap &mut
// MaybeUninit<T> in Pin if T is !Unpin. It should understand
// 'structural pinning', so that we do not need into_inner_unchecked()
// here.
quote! {
::ctor::FnCtor::new(
move |dest: ::core::pin::Pin<&mut ::core::mem::MaybeUninit<
#return_type_or_self>>| {
#crate_root_path::detail::#thunk_ident(
::core::pin::Pin::into_inner_unchecked(dest)
#( , #thunk_args )*
);
})
}
}
};
// Discard the return value if requested (for example, when calling a C++
// operator that returns a value from a Rust trait that returns
// unit).
if let ImplKind::Trait { drop_return: true, .. } = impl_kind {
if return_type.is_unpin() {
// If it's unpin, just discard it:
body = quote! { #body; };
} else {
// Otherwise, in order to discard the return value and return void, we
// need to run the constructor.
body = quote! {let _ = ::ctor::emplace!(#body);};
}
// We would need to do this, but it's no longer used:
// return_type = RsTypeKind::Primitive(PrimitiveType::Unit);
let _ = return_type; // proof that we don't need to update it.
quoted_return_type = quote! {};
}
// Only need to wrap everything in an `unsafe { ... }` block if
// the *whole* api function is safe.
if !impl_kind.is_unsafe() {
body = quote! { unsafe { #body } };
}
quote! {
#thunk_prepare
#body
}
}
};
let pub_ = match impl_kind {
ImplKind::None { .. } | ImplKind::Struct { .. } => quote! { pub },
ImplKind::Trait { .. } => quote! {},
};
let unsafe_ = if impl_kind.is_unsafe() {
quote! { unsafe }
} else {
quote! {}
};
let fn_generic_params: TokenStream;
if let ImplKind::Trait { trait_name, trait_generic_params, impl_for, .. } = &mut impl_kind {
// When the impl block is for some kind of reference to T, consider the lifetime
// parameters on the self parameter to be trait lifetimes so they can be
// introduced before they are used.
let first_param_lifetimes = match (impl_for, param_types.first()) {
(ImplFor::RefT, Some(first_param)) => Some(first_param.lifetimes()),
_ => None,
};
let trait_lifetimes: HashSet<Lifetime> =
trait_name.lifetimes().chain(first_param_lifetimes.into_iter().flatten()).collect();
fn_generic_params = format_generic_params(
lifetimes.iter().filter(|lifetime| !trait_lifetimes.contains(lifetime)),
std::iter::empty::<syn::Ident>(),
);
*trait_generic_params = Rc::from(
lifetimes
.iter()
.filter_map(|lifetime| {
if trait_lifetimes.contains(lifetime) {
Some(lifetime.clone())
} else {
None
}
})
.collect::<Vec<Lifetime>>(),
);
} else {
fn_generic_params = format_generic_params(&lifetimes, std::iter::empty::<syn::Ident>());
}
let function_return_type = match &impl_kind {
ImplKind::Trait { associated_return_type: Some(ident), .. } => quote! {Self::#ident},
_ => quoted_return_type.clone(),
};
let arrow = if !function_return_type.is_empty() {
quote! {->}
} else {
quote! {}
};
quote! {
#[inline(always)]
#pub_ #unsafe_ fn #func_name #fn_generic_params(
#( #api_params ),* ) #arrow #function_return_type {
#func_body
}
}
};
let doc_comment = crate::generate_doc_comment(
func.doc_comment.as_deref(),
Some(&func.source_loc),
db.generate_source_loc_doc_comment(),
);
let api_func: TokenStream;
let function_id: FunctionId;
match impl_kind {
ImplKind::None { .. } => {
api_func = quote! { #doc_comment #api_func_def };
function_id = FunctionId {
self_type: None,
function_path: syn::parse2(quote! { #namespace_qualifier #func_name }).unwrap(),
};
}
ImplKind::Struct { record, .. } => {
let record_name = make_rs_ident(record.rs_name.as_ref());
api_func = quote! { impl #record_name { #doc_comment #api_func_def } };
function_id = FunctionId {
self_type: None,
function_path: syn::parse2(quote! {
#namespace_qualifier #record_name :: #func_name
})
.unwrap(),
};
}
ImplKind::Trait {
record: trait_record,
trait_name,
impl_for,
trait_generic_params,
associated_return_type,
..
} => {
let extra_body = if let Some(name) = associated_return_type {
let quoted_return_type = if quoted_return_type.is_empty() {
quote! {()}
} else {
quoted_return_type
};
quote! {
type #name = #quoted_return_type;
}
} else if let TraitName::PartialOrd { ref params } = trait_name {
let param = params.get(0).ok_or_else(|| anyhow!("No parameter to PartialOrd"))?;
let quoted_param_or_self = match impl_for {
ImplFor::T => param.to_token_stream_replacing_by_self(Some(&trait_record)),
ImplFor::RefT => quote! { #param },
};
quote! {
#[inline(always)]
fn partial_cmp(&self, other: & #quoted_param_or_self) -> Option<core::cmp::Ordering> {
if self == other {
return Some(core::cmp::Ordering::Equal);
}
if self < other {
return Some(core::cmp::Ordering::Less);
}
if other < self {
return Some(core::cmp::Ordering::Greater);
}
None
}
}
} else {
quote! {}
};
let record_name = make_rs_ident(trait_record.rs_name.as_ref());
let extra_items;
let formatted_trait_generic_params =
format_generic_params(/* lifetimes= */ &[], &*trait_generic_params);
match &trait_name {
TraitName::CtorNew(params) => {
if params.len() == 1 {
let single_param_ = format_tuple_except_singleton_replacing_by_self(
params,
Some(&trait_record),
);
extra_items = quote! {
impl #formatted_trait_generic_params ::ctor::CtorNew<(#single_param_,)> for #record_name {
#extra_body
#[inline (always)]
fn ctor_new(args: (#single_param_,)) -> Self::CtorType {
let (arg,) = args;
<Self as ::ctor::CtorNew<#single_param_>>::ctor_new(arg)
}
}
}
} else {
extra_items = quote! {}
}
}
_ => {
extra_items = quote! {};
}
};
let (trait_name_without_trait_record, impl_for) = match impl_for {
ImplFor::T => (
trait_name.to_token_stream_removing_trait_record(Some(&trait_record)),
quote! { #record_name },
),
ImplFor::RefT => {
let param = &param_types[0];
(quote! { #trait_name }, quote! { #param })
}
};
api_func = quote! {
#doc_comment
impl #formatted_trait_generic_params #trait_name_without_trait_record for #impl_for {
#extra_body
#api_func_def
}
#extra_items
};
let record_qualifier = ir.namespace_qualifier(&trait_record)?.format_for_rs();
function_id = FunctionId {
self_type: Some(syn::parse2(quote! { #record_qualifier #record_name }).unwrap()),
function_path: syn::parse2(quote! { #trait_name :: #func_name }).unwrap(),
};
}
}
let generated_item = GeneratedItem {
item: api_func,
thunks: thunk,
features,
thunk_impls: generate_func_thunk_impl(db, &func)?,
..Default::default()
};
Ok(Some((Rc::new(generated_item), Rc::new(function_id))))
}
/// The function signature for a function's bindings.
struct BindingsSignature {
/// The lifetime parameters for the Rust function.
lifetimes: Vec<Lifetime>,
/// The parameter list for the Rust function.
///
/// For example, `vec![quote!{self}, quote!{x: &i32}]`.
params: Vec<TokenStream>,
/// The return type fragment of the Rust function, as a token stream.
///
/// This is the same as the actual return type, except that () is the empty
/// tokens, non-Unpin by-value types are `impl Ctor<Output=#return_type> +
/// ...`, and wherever the type is the type of `Self`, it gets replaced by
/// literal `Self`.
return_type_fragment: TokenStream,
/// Any preparation code to define the arguments in `thunk_args`.
thunk_prepare: TokenStream,
/// The arguments passed to the thunk, expressed in terms of `params`.
thunk_args: Vec<TokenStream>,
}
/// Reformats API parameters and return values to match Rust conventions and the
/// trait requirements.
///
/// For example:
///
/// * Use the `self` keyword for the this pointer.
/// * Use `Self` for the return value of constructor traits.
/// * For C++ constructors, remove `self` from the Rust side (as it becomes the
/// return value), retaining it on the C++ side / thunk args.
/// * serialize a `()` as the empty string.
fn function_signature(
features: &mut BTreeSet<Ident>,
func: &Func,
impl_kind: &ImplKind,
param_idents: &[Ident],
param_types: &mut Vec<RsTypeKind>,
return_type: &mut RsTypeKind,
) -> Result<BindingsSignature> {
let mut api_params = Vec::with_capacity(func.params.len());
let mut thunk_args = Vec::with_capacity(func.params.len());
let mut thunk_prepare = quote! {};
let impl_kind_record = match impl_kind {
ImplKind::Struct { record, .. } | ImplKind::Trait { record, impl_for: ImplFor::T, .. } => {
Some(record)
}
_ => None,
};
for (i, (ident, type_)) in param_idents.iter().zip(param_types.iter()).enumerate() {
type_.check_by_value()?;
if !type_.is_unpin() {
// `impl Ctor` will fail to compile in a trait.
// This will only be hit if there was a bug in api_func_shape.
if let ImplKind::Trait { .. } = &impl_kind {
panic!(
"non-Unpin types cannot work by value in traits; this should have instead \
become an rvalue reference to force the caller to materialize the Ctor."
);
}
// The generated bindings require a move constructor.
if !type_.is_move_constructible() {
bail!("Non-movable, non-trivial_abi type '{type}' is not supported by value as parameter #{i}", type=quote!{#type_});
}
let quoted_type_or_self = if let Some(impl_record) = impl_kind_record {
type_.to_token_stream_replacing_by_self(Some(impl_record))
} else {
quote! {#type_}
};
features.insert(make_rs_ident("impl_trait_in_assoc_type"));
api_params.push(quote! {#ident: impl ::ctor::Ctor<Output=#quoted_type_or_self>});
thunk_args
.push(quote! {::core::pin::Pin::into_inner_unchecked(::ctor::emplace!(#ident))});
} else {
let quoted_type_or_self = if let Some(impl_record) = impl_kind_record {
type_.to_token_stream_replacing_by_self(Some(impl_record))
} else {
quote! {#type_}
};
if type_.is_c_abi_compatible_by_value() {
api_params.push(quote! {#ident: #quoted_type_or_self});
thunk_args.push(quote! {#ident});
} else {
api_params.push(quote! {mut #ident: #quoted_type_or_self});
thunk_args.push(quote! {&mut #ident});
}
}
}
let mut lifetimes: Vec<Lifetime> = unique_lifetimes(&*param_types).collect();
let mut quoted_return_type = None;
if let ImplKind::Trait {
trait_name: trait_name @ (TraitName::UnpinConstructor { .. } | TraitName::CtorNew(..)),
..
} = &impl_kind
{
// For constructors, we move the output parameter to be the return value.
// The return value is "really" void.
ensure!(
func.return_type.rs_type.is_unit_type(),
"Unexpectedly non-void return type of a constructor"
);
// Presence of element #0 is indirectly verified by a `Constructor`-related
// `match` branch a little bit above.
*return_type = param_types[0]
.referent()
.ok_or_else(|| anyhow!("Expected pointer/reference for `__this` parameter"))?
.clone();
quoted_return_type = Some(quote! {Self});
// Grab the `__this` lifetime to remove it from the lifetime parameters.
let this_lifetime = param_types[0]
.lifetime()
.ok_or_else(|| anyhow!("Missing lifetime for `__this` parameter"))?;
// Drop `__this` parameter from the public Rust API.
api_params.remove(0);
thunk_args.remove(0);
param_types.remove(0);
// Remove the lifetime associated with `__this`.
lifetimes.retain(|l| l != &this_lifetime);
if let Some(type_still_dependent_on_removed_lifetime) = param_types
.iter()
.flat_map(|t| t.lifetimes())
.find(|lifetime| lifetime == &this_lifetime)
{
bail!(
"The lifetime of `__this` is unexpectedly also used by another \
parameter: {type_still_dependent_on_removed_lifetime:?}",
);
}
// CtorNew groups parameters into a tuple.
if let TraitName::CtorNew(args_type) = trait_name {
let args_type = if let Some(impl_record) = impl_kind_record {
format_tuple_except_singleton_replacing_by_self(args_type, Some(impl_record))
} else {
format_tuple_except_singleton(args_type)
};
api_params = vec![quote! {args: #args_type}];
let thunk_vars = format_tuple_except_singleton(&thunk_args);
thunk_prepare.extend(quote! {let #thunk_vars = args;});
}
}
let return_type_fragment = if return_type == &RsTypeKind::Primitive(PrimitiveType::Unit) {
quote! {}
} else {
let ty = quoted_return_type.unwrap_or_else(|| quote! {#return_type});
if return_type.is_unpin() {
quote! {#ty}
} else {
// TODO(jeanpierreda): use `-> impl Ctor` instead of `-> Self::X` where `X = impl
// Ctor`. The latter requires `impl_trait_in_assoc_type`, the former
// was stabilized in 1.75. Directly returning an unnameable `impl
// Ctor` is sufficient for us, and makes traits like `CtorNew` more
// similar to top-level functions.)
// The returned lazy FnCtor depends on all inputs.
let extra_lifetimes = lifetimes.iter().map(|a| quote! {+ ::ctor::Captures<#a>});
features.insert(make_rs_ident("impl_trait_in_assoc_type"));
quote! {impl ::ctor::Ctor<Output=#ty> #(#extra_lifetimes)* }
}
};
// Change `__this: &'a SomeStruct` into `&'a self` if needed.
if impl_kind.format_first_param_as_self() {
let first_api_param = param_types
.get(0)
.ok_or_else(|| anyhow!("No parameter to format as 'self': {:?}", func))?;
// If param_types[0] exists, so do api_params[0] and thunk_args[0].
match impl_kind {
ImplKind::None { .. } => unreachable!(),
ImplKind::Struct { .. } | ImplKind::Trait { impl_for: ImplFor::T, .. } => {
// In the ImplFor::T reference style (which is implied for ImplKind::Struct) the
// impl block is for `T`. The `self` parameter has a type determined by the
// first parameter (typically a reference of some kind) and can be passed to a
// thunk via the expression `self`.
if first_api_param.is_c_abi_compatible_by_value() {
let rs_snippet = first_api_param.format_as_self_param()?;
api_params[0] = rs_snippet.tokens;
features.extend(rs_snippet.features.into_iter());
thunk_args[0] = quote! { self };
} else {
api_params[0] = quote! { mut self };
thunk_args[0] = quote! { &mut self };
}
}
ImplKind::Trait { impl_for: ImplFor::RefT, .. } => {
// In the ImplFor::RefT reference style the impl block is for a reference type
// referring to T (`&T`, `&mut T`, or `Pin<&mut T>` so a bare `self` parameter
// has that type and can be passed to a thunk via the expression `self`.
api_params[0] = quote! { self };
thunk_args[0] = quote! { self };
}
}
}
Ok(BindingsSignature {
lifetimes,
params: api_params,
return_type_fragment,
thunk_prepare,
thunk_args,
})
}
fn generate_func_thunk(
db: &dyn BindingsGenerator,
func: &Func,
param_idents: &[Ident],
param_types: &[RsTypeKind],
return_type: &RsTypeKind,
) -> Result<TokenStream> {
let thunk_attr = if can_skip_cc_thunk(db, func) {
let mangled_name = func.mangled_name.as_ref();
quote! {#[link_name = #mangled_name]}
} else {
quote! {}
};
let lifetimes: Vec<_> = unique_lifetimes(param_types).collect();
// The first parameter is the output parameter, if any.
let mut param_types = param_types.iter();
let mut param_idents = param_idents.iter();
let mut out_param = None;
let mut out_param_ident = None;
let mut return_type_fragment = return_type.format_as_return_type_fragment(None);
if func.name == UnqualifiedIdentifier::Constructor {
// For constructors, inject MaybeUninit into the type of `__this_` parameter.
let first_param = param_types
.next()
.ok_or_else(|| anyhow!("Constructors should have at least one parameter (__this)"))?;
out_param = Some(first_param.format_mut_ref_as_uninitialized().with_context(|| {
format!(
"Failed to format `__this` param for a constructor thunk: {:?}",
func.params.get(0)
)
})?);
out_param_ident = Some(param_idents.next().unwrap().clone());
} else if !return_type.is_c_abi_compatible_by_value() {
// For return types that can't be passed by value, create a new out parameter.
// The lifetime doesn't matter, so we can insert a new anonymous lifetime here.
out_param = Some(quote! {
&mut ::core::mem::MaybeUninit< #return_type >
});
out_param_ident = Some(make_rs_ident("__return"));
return_type_fragment = quote! {};
}
let thunk_ident = thunk_ident(func);
let generic_params = format_generic_params(&lifetimes, std::iter::empty::<syn::Ident>());
let param_idents = out_param_ident.as_ref().into_iter().chain(param_idents);
let param_types = out_param.into_iter().chain(param_types.map(|t| {
if !t.is_c_abi_compatible_by_value() {
quote! {&mut #t}
} else {
quote! {#t}
}
}));
Ok(quote! {
#thunk_attr
pub(crate) fn #thunk_ident #generic_params( #( #param_idents: #param_types ),*
) #return_type_fragment ;
})
}
/// Formats singletons as themselves, and collections of n!=1 items as a tuple.
///
/// In other words, this formats a collection of things as if via `#(#items),*`,
/// but without lint warnings.
///
/// For example:
///
/// * [] => ()
/// * [x] => x // equivalent to (x), but lint-free.
/// * [x, y] => (x, y)
fn format_tuple_except_singleton<T: ToTokens>(items: &[T]) -> TokenStream {
match items {
[singleton] => quote! {#singleton},
items => quote! {(#(#items),*)},
}
}
fn format_tuple_except_singleton_replacing_by_self(
items: &[RsTypeKind],
trait_record: Option<&Record>,
) -> TokenStream {
match items {
[singleton] => {
let singleton_or_self = singleton.to_token_stream_replacing_by_self(trait_record);
quote! {#singleton_or_self}
}
items => {
let mut elements_of_tuple = quote! {};
for (type_index, type_) in items.iter().enumerate() {
let quoted_type_or_self = type_.to_token_stream_replacing_by_self(trait_record);
if type_index > 0 {
(quote! {, #quoted_type_or_self }).to_tokens(&mut elements_of_tuple);
} else {
(quote! { #quoted_type_or_self }).to_tokens(&mut elements_of_tuple);
}
}
quote! { ( #elements_of_tuple ) }
}
}
}
/// Identifies all functions having overloads that we can't import (yet).
///
/// TODO(b/213280424): Implement support for overloaded functions.
pub fn overloaded_funcs(db: &dyn BindingsGenerator) -> Rc<HashSet<Rc<FunctionId>>> {
let mut seen_funcs = HashSet::new();
let mut overloaded_funcs = HashSet::new();
for func in db.ir().functions() {
if let Ok(Some(f)) = db.generate_func(func.clone()) {
let (.., function_id) = &f;
if !seen_funcs.insert(function_id.clone()) {
overloaded_funcs.insert(function_id.clone());
}
}
}
Rc::new(overloaded_funcs)
}
fn unique_lifetimes<'a>(
types: impl IntoIterator<Item = &'a RsTypeKind> + 'a,
) -> impl Iterator<Item = Lifetime> + 'a {
let mut unordered_lifetimes = HashSet::new();
types
.into_iter()
.flat_map(|ty| ty.lifetimes())
.filter(move |lifetime| unordered_lifetimes.insert(lifetime.clone()))
}
fn thunk_ident(func: &Func) -> Ident {
let odr_suffix = if func.is_member_or_descendant_of_class_template {
func.owning_target.convert_to_cc_identifier()
} else {
String::new()
};
format_ident!("__rust_thunk__{}{odr_suffix}", func.mangled_name.as_ref())
}
fn generate_func_thunk_impl(db: &dyn BindingsGenerator, func: &Func) -> Result<TokenStream> {
if can_skip_cc_thunk(db, func) {
return Ok(quote! {});
}
let ir = db.ir();
let thunk_ident = thunk_ident(func);
let implementation_function = match &func.name {
UnqualifiedIdentifier::Operator(op) => {
let name = syn::parse_str::<TokenStream>(&op.name)?;
quote! { operator #name }
}
UnqualifiedIdentifier::Identifier(id) => {
let fn_ident = crate::format_cc_ident(&id.identifier);
match func.member_func_metadata.as_ref() {
Some(meta) => {
if meta.instance_method_metadata.is_some() {
quote! { #fn_ident }
} else {
let record: &Rc<Record> = ir.find_decl(meta.record_id)?;
let record_ident = crate::format_cc_ident(record.cc_name.as_ref());
let namespace_qualifier =
ir.namespace_qualifier(record)?.format_for_cc()?;
quote! { #namespace_qualifier #record_ident :: #fn_ident }
}
}
None => {
let namespace_qualifier = ir.namespace_qualifier(func)?.format_for_cc()?;
quote! { #namespace_qualifier #fn_ident }
}
}
}
// Use `destroy_at` to avoid needing to spell out the class name. Destructor identiifers
// use the name of the type itself, without namespace qualification, template
// parameters, or aliases. We do not need to use that naming scheme anywhere else in
// the bindings, and it can be difficult (impossible?) to spell in the general case. By
// using destroy_at, we avoid needing to determine or remember what the correct spelling
// is. Similar arguments apply to `construct_at`.
UnqualifiedIdentifier::Constructor => {
quote! { crubit::construct_at }
}
UnqualifiedIdentifier::Destructor => quote! {std::destroy_at},
};
let mut param_idents =
func.params.iter().map(|p| crate::format_cc_ident(&p.identifier.identifier)).collect_vec();
let mut param_types = func
.params
.iter()
.map(|p| {
let formatted = crate::format_cc_type(&p.type_.cc_type, &ir)?;
if !db.rs_type_kind(p.type_.rs_type.clone())?.is_c_abi_compatible_by_value() {
// non-Unpin types are wrapped by a pointer in the thunk.
Ok(quote! {#formatted *})
} else {
Ok(formatted)
}
})
.collect::<Result<Vec<_>>>()?;
let arg_expressions = func
.params
.iter()
.map(|p| {
let ident = crate::format_cc_ident(&p.identifier.identifier);
match p.type_.cc_type.name.as_deref() {
Some("&") => Ok(quote! { * #ident }),
Some("&&") => Ok(quote! { std::move(* #ident) }),
_ => {
// non-Unpin types are wrapped by a pointer in the thunk.
if !db.rs_type_kind(p.type_.rs_type.clone())?.is_c_abi_compatible_by_value() {
Ok(quote! { std::move(* #ident) })
} else {
Ok(quote! { #ident })
}
}
}
})
.collect::<Result<Vec<_>>>()?;
// Here, we add a `__return` parameter if the return type can't be passed by
// value across `extern "C"` ABI. (We do this after the arg_expressions
// computation, so that it's only in the parameter list, not the argument
// list.)
let is_return_value_c_abi_compatible =
db.rs_type_kind(func.return_type.rs_type.clone())?.is_c_abi_compatible_by_value();
let return_type_name = if !is_return_value_c_abi_compatible {
param_idents.insert(0, crate::format_cc_ident("__return"));
// In order to be modified, the return type can't be const.
let mut cc_return_type = func.return_type.cc_type.clone();
cc_return_type.is_const = false;
let return_type_name = crate::format_cc_type(&cc_return_type, &ir)?;
param_types.insert(0, quote! {#return_type_name *});
quote! {void}
} else {
crate::format_cc_type(&func.return_type.cc_type, &ir)?
};
let this_ref_qualification =
func.member_func_metadata.as_ref().and_then(|meta| match &func.name {
UnqualifiedIdentifier::Constructor | UnqualifiedIdentifier::Destructor => None,
UnqualifiedIdentifier::Identifier(_) | UnqualifiedIdentifier::Operator(_) => meta
.instance_method_metadata
.as_ref()
.map(|instance_method| instance_method.reference),
});
let (implementation_function, arg_expressions) =
if let Some(this_ref_qualification) = this_ref_qualification {
let this_param = func
.params
.first()
.ok_or_else(|| anyhow!("Instance methods must have `__this` param."))?;
let this_arg = crate::format_cc_ident(&this_param.identifier.identifier);
let this_dot = if this_ref_qualification == ir::ReferenceQualification::RValue {
quote! {std::move(*#this_arg).}
} else {
quote! {#this_arg->}
};
(
quote! { #this_dot #implementation_function},
arg_expressions.iter().skip(1).cloned().collect_vec(),
)
} else {
(implementation_function, arg_expressions)
};
let return_expr = quote! {#implementation_function( #( #arg_expressions ),* )};
let return_stmt = if !is_return_value_c_abi_compatible {
// Explicitly use placement `new` so that we get guaranteed copy elision in
// C++17.
let out_param = &param_idents[0];
quote! {new(#out_param) auto(#return_expr)}
} else {
match func.return_type.cc_type.name.as_deref() {
Some("void") => return_expr,
Some("&") => quote! { return & #return_expr },
Some("&&") => {
// The code below replicates bits of `format_cc_type`, but formats an rvalue
// reference (which `format_cc_type` would format as a pointer).
// `const_fragment` from `format_cc_type` is ignored - it is not applicable for
// references.
let ty = &func.return_type.cc_type;
if ty.type_args.len() != 1 {
bail!("Invalid reference type (need exactly 1 type argument): {:?}", ty);
}
let nested_type = crate::format_cc_type(&ty.type_args[0], &ir)?;
quote! {
#nested_type && lvalue = #return_expr;
return &lvalue
}
}
_ => quote! { return #return_expr },
}
};
Ok(quote! {
extern "C" #return_type_name #thunk_ident( #( #param_types #param_idents ),* ) {
#return_stmt;
}
})
}
#[cfg(test)]
mod tests {
use super::*;
use crate::tests::*;
use crate::BindingsTokens;
use ir_testing::{retrieve_func, with_lifetime_macros};
use token_stream_matchers::{
assert_cc_matches, assert_cc_not_matches, assert_rs_matches, assert_rs_not_matches,
};
use token_stream_printer::rs_tokens_to_formatted_string_for_tests;
#[test]
fn test_simple_function() -> Result<()> {
let ir = ir_from_cc("int Add(int a, int b);")?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
#[inline(always)]
pub fn Add(a: ::core::ffi::c_int, b: ::core::ffi::c_int) -> ::core::ffi::c_int {
unsafe { crate::detail::__rust_thunk___Z3Addii(a, b) }
}
}
);
assert_rs_matches!(
rs_api,
quote! {
mod detail {
#[allow(unused_imports)]
use super::*;
extern "C" {
#[link_name = "_Z3Addii"]
pub(crate) fn __rust_thunk___Z3Addii(a: ::core::ffi::c_int, b: ::core::ffi::c_int) -> ::core::ffi::c_int;
}
}
}
);
assert_cc_not_matches!(rs_api_impl, quote! {__rust_thunk___Z3Addii});
Ok(())
}
#[test]
fn test_inline_function() -> Result<()> {
let ir = ir_from_cc("inline int Add(int a, int b);")?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
#[inline(always)]
pub fn Add(a: ::core::ffi::c_int, b: ::core::ffi::c_int) -> ::core::ffi::c_int {
unsafe { crate::detail::__rust_thunk___Z3Addii(a, b) }
}
}
);
assert_rs_matches!(
rs_api,
quote! {
mod detail {
#[allow(unused_imports)]
use super::*;
extern "C" {
pub(crate) fn __rust_thunk___Z3Addii(a: ::core::ffi::c_int, b: ::core::ffi::c_int) -> ::core::ffi::c_int;
}
}
}
);
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" int __rust_thunk___Z3Addii(int a, int b) {
return Add(a, b);
}
}
);
Ok(())
}
#[test]
fn test_simple_function_with_types_from_other_target() -> Result<()> {
let ir = ir_from_cc_dependency(
"inline ReturnStruct DoSomething(ParamStruct param);",
"struct ReturnStruct final {}; struct ParamStruct final {};",
)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
#[inline(always)]
pub fn DoSomething(mut param: dependency::ParamStruct)
-> dependency::ReturnStruct {
unsafe {
let mut __return =
::core::mem::MaybeUninit::<dependency::ReturnStruct>::uninit();
crate::detail::__rust_thunk___Z11DoSomething11ParamStruct(
&mut __return, &mut param);
__return.assume_init()
}
}
}
);
assert_rs_matches!(
rs_api,
quote! {
mod detail {
#[allow(unused_imports)]
use super::*;
extern "C" {
pub(crate) fn __rust_thunk___Z11DoSomething11ParamStruct(
__return: &mut ::core::mem::MaybeUninit<dependency::ReturnStruct>,
param: &mut dependency::ParamStruct
);
}
}}
);
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" void __rust_thunk___Z11DoSomething11ParamStruct(
struct ReturnStruct* __return, struct ParamStruct* param) {
new (__return) auto(DoSomething(std::move(*param)));
}
}
);
Ok(())
}
#[test]
fn test_ref_to_struct_in_thunk_impls() -> Result<()> {
let ir = ir_from_cc("struct S{}; inline void foo(S& s) {} ")?;
let rs_api_impl = generate_bindings_tokens(ir)?.rs_api_impl;
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" void __rust_thunk___Z3fooR1S(struct S* s) {
foo(*s);
}
}
);
Ok(())
}
#[test]
fn test_const_ref_to_struct_in_thunk_impls() -> Result<()> {
let ir = ir_from_cc("struct S{}; inline void foo(const S& s) {} ")?;
let rs_api_impl = generate_bindings_tokens(ir)?.rs_api_impl;
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" void __rust_thunk___Z3fooRK1S(const struct S* s) {
foo(*s);
}
}
);
Ok(())
}
#[test]
fn test_unsigned_int_in_thunk_impls() -> Result<()> {
let ir = ir_from_cc("inline void foo(unsigned int i) {} ")?;
let rs_api_impl = generate_bindings_tokens(ir)?.rs_api_impl;
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" void __rust_thunk___Z3fooj(unsigned int i) {
foo(i);
}
}
);
Ok(())
}
#[test]
fn test_record_static_methods_qualify_call_in_thunk() -> Result<()> {
let ir = ir_from_cc(
r#"
struct SomeStruct {
static inline int some_func() { return 42; }
}; "#,
)?;
assert_cc_matches!(
generate_bindings_tokens(ir)?.rs_api_impl,
quote! {
extern "C" int __rust_thunk___ZN10SomeStruct9some_funcEv() {
return SomeStruct::some_func();
}
}
);
Ok(())
}
#[test]
fn test_record_instance_methods_deref_this_in_thunk() -> Result<()> {
let ir = ir_from_cc(
r#"
struct SomeStruct {
inline int some_func(int arg) const { return 42 + arg; }
}; "#,
)?;
assert_cc_matches!(
generate_bindings_tokens(ir)?.rs_api_impl,
quote! {
extern "C" int __rust_thunk___ZNK10SomeStruct9some_funcEi(
const struct SomeStruct* __this, int arg) {
return __this->some_func(arg);
}
}
);
Ok(())
}
#[test]
fn test_ptr_func() -> Result<()> {
let ir = ir_from_cc(r#" inline int* Deref(int*const* p); "#)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
#[inline(always)]
pub unsafe fn Deref(p: *const *mut ::core::ffi::c_int) -> *mut ::core::ffi::c_int {
crate::detail::__rust_thunk___Z5DerefPKPi(p)
}
}
);
assert_rs_matches!(
rs_api,
quote! {
mod detail {
#[allow(unused_imports)]
use super::*;
extern "C" {
pub(crate) fn __rust_thunk___Z5DerefPKPi(p: *const *mut ::core::ffi::c_int) -> *mut ::core::ffi::c_int;
}
}
}
);
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" int* __rust_thunk___Z5DerefPKPi(int* const * p) {
return Deref(p);
}
}
);
Ok(())
}
#[test]
fn test_const_char_ptr_func() -> Result<()> {
// This is a regression test: We used to include the "const" in the name
// of the CcType, which caused a panic in the code generator
// ('"const char" is not a valid Ident').
// It's therefore important that f() is inline so that we need to
// generate a thunk for it (where we then process the CcType).
let ir = ir_from_cc(r#" inline void f(const signed char *str); "#)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
#[inline(always)]
pub unsafe fn f(str: *const ::core::ffi::c_schar) {
crate::detail::__rust_thunk___Z1fPKa(str)
}
}
);
assert_rs_matches!(
rs_api,
quote! {
extern "C" {
pub(crate) fn __rust_thunk___Z1fPKa(str: *const ::core::ffi::c_schar);
}
}
);
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" void __rust_thunk___Z1fPKa(signed char const * str){ f(str); }
}
);
Ok(())
}
#[test]
fn test_func_ptr_thunk() -> Result<()> {
// Using an `inline` keyword forces generation of a C++ thunk in
// `rs_api_impl` (i.e. exercises `format_cc_type` and similar code).
let ir = ir_from_cc(
r#"
int multiply(int x, int y);
inline int (*inline_get_pointer_to_function())(int, int) {
return multiply;
}
"#,
)?;
let rs_api_impl = generate_bindings_tokens(ir)?.rs_api_impl;
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" crubit::type_identity_t<int(int , int)>*
__rust_thunk___Z30inline_get_pointer_to_functionv() {
return inline_get_pointer_to_function();
}
}
);
Ok(())
}
#[test]
fn test_doc_comment_func() -> Result<()> {
let ir = ir_from_cc(
"
// Doc Comment
// with two lines
int func();",
)?;
assert_rs_matches!(
generate_bindings_tokens(ir)?.rs_api,
// leading space is intentional so there is a space between /// and the text of the
// comment
quote! {
#[doc = " Doc Comment\n with two lines\n \n Generated from: google3/ir_from_cc_virtual_header.h;l=6"]
#[inline(always)]
pub fn func
}
);
Ok(())
}
/// Trivial types (at least those that are mapped to Copy rust types) do not
/// get a Drop impl.
#[test]
fn test_impl_drop_trivial() -> Result<()> {
let ir = ir_from_cc(
r#"struct Trivial final {
~Trivial() = default;
int x;
};"#,
)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_not_matches!(rs_api, quote! {impl Drop});
assert_rs_not_matches!(rs_api, quote! {impl ::ctor::PinnedDrop});
assert_rs_matches!(rs_api, quote! {pub x: ::core::ffi::c_int});
assert_cc_not_matches!(rs_api_impl, quote! { std::destroy_at });
Ok(())
}
#[test]
fn test_impl_default_explicitly_defaulted_constructor() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct DefaultedConstructor final {
DefaultedConstructor() = default;
};"#,
)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
impl Default for DefaultedConstructor {
#[inline(always)]
fn default() -> Self {
let mut tmp = ::core::mem::MaybeUninit::<Self>::zeroed();
unsafe {
crate::detail::__rust_thunk___ZN20DefaultedConstructorC1Ev(&mut tmp);
tmp.assume_init()
}
}
}
}
);
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" void __rust_thunk___ZN20DefaultedConstructorC1Ev(
struct DefaultedConstructor* __this) {
crubit::construct_at(__this);
}
}
);
Ok(())
}
#[test]
fn test_impl_clone_that_propagates_lifetime() -> Result<()> {
// This test covers the case where a single lifetime applies to 1)
// the `__this` parameter and 2) other constructor parameters. For
// example, maybe the newly constructed object needs to have the
// same lifetime as the constructor's parameter. (This might require
// annotating the whole C++ struct with a lifetime, so maybe the
// example below is not fully realistic/accurate...).
let ir = ir_from_cc(&with_lifetime_macros(
r#"#pragma clang lifetime_elision
struct Foo final {
Foo(const int& $a i) $a;
};"#,
))?;
let ctor: &Func = ir
.items()
.filter_map(|item| match item {
Item::Func(func) => Some(&**func),
_ => None,
})
.find(|f| {
matches!(&f.name, UnqualifiedIdentifier::Constructor)
&& f.params
.get(1)
.map(|p| p.identifier.identifier.as_ref() == "i")
.unwrap_or_default()
})
.unwrap();
{
// Double-check that the test scenario set up above uses the same lifetime
// for both of the constructor's parameters: `__this` and `i`.
assert_eq!(ctor.params.len(), 2);
let this_lifetime: LifetimeId =
*ctor.params[0].type_.rs_type.lifetime_args.first().unwrap();
let i_lifetime: LifetimeId =
*ctor.params[1].type_.rs_type.lifetime_args.first().unwrap();
assert_eq!(i_lifetime, this_lifetime);
}
// Before cl/423346348 the generated Rust code would incorrectly look
// like this (note the mismatched 'a and 'b lifetimes):
// fn from<'b>(i: &'a i32) -> Self
// After this CL, this scenario will result in an explicit error.
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_not_matches!(rs_api, quote! {impl From});
assert_rs_matches!(rs_api, {
let txt = "Generated from: google3/ir_from_cc_virtual_header.h;l=34\n\
Error while generating bindings for item 'Foo::Foo':\n\
The lifetime of `__this` is \
unexpectedly also used by another parameter: Lifetime(\"a\")";
quote! { __COMMENT__ #txt }
});
Ok(())
}
#[test]
fn test_impl_default_non_trivial_struct() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct NonTrivialStructWithConstructors final {
NonTrivialStructWithConstructors();
~NonTrivialStructWithConstructors(); // Non-trivial
};"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_not_matches!(rs_api, quote! {impl Default});
Ok(())
}
#[test]
fn test_impl_from_for_1_arg_constructor() -> Result<()> {
for explicit_qualifier in ["", "explicit"] {
let ir = ir_from_cc(&format!(
r#"#pragma clang lifetime_elision
struct SomeStruct final {{
{explicit_qualifier} SomeStruct(int i); // implicit - no `explicit` keyword
}};"#,
))?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_matches!(
rs_api,
quote! {
impl From<::core::ffi::c_int> for SomeStruct {
#[inline(always)]
fn from(i: ::core::ffi::c_int) -> Self {
let mut tmp = ::core::mem::MaybeUninit::<Self>::zeroed();
unsafe {
crate::detail::__rust_thunk___ZN10SomeStructC1Ei(&mut tmp, i);
tmp.assume_init()
}
}
}
}
);
}
Ok(())
}
#[test]
fn test_impl_from_for_implicit_conversion_from_reference() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct SomeOtherStruct final { int i; };
struct StructUnderTest final {
StructUnderTest(const SomeOtherStruct& other); // implicit - no `explicit` keyword
};"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
// This is a regression test for b/223800038: We want to ensure that the
// code says `impl<'b>` (instead of incorrectly declaring that lifetime
// in `fn from<'b>`).
assert_rs_matches!(
rs_api,
quote! {
impl<'b> From<&'b crate::SomeOtherStruct> for StructUnderTest {
#[inline(always)]
fn from(other: &'b crate::SomeOtherStruct) -> Self {
let mut tmp = ::core::mem::MaybeUninit::<Self>::zeroed();
unsafe {
crate::detail::__rust_thunk___ZN15StructUnderTestC1ERK15SomeOtherStruct(
&mut tmp, other);
tmp.assume_init()
}
}
}
},
);
Ok(())
}
/// Methods with missing lifetimes for `self` should give a useful error
/// message.
#[test]
fn test_eq_nolifetime() -> Result<()> {
// Missing lifetimes currently only causes hard errors for trait impls,
// not For inherent methods.
let ir = ir_from_cc("struct SomeStruct{SomeStruct& operator=(const SomeStruct&);};")?;
let rs_api = rs_tokens_to_formatted_string_for_tests(generate_bindings_tokens(ir)?.rs_api)?;
assert!(rs_api.contains(
"// Error while generating bindings for item 'SomeStruct::operator=':\n\
// `self` has no lifetime. Use lifetime annotations or \
`#pragma clang lifetime_elision` to create bindings for this function."
));
Ok(())
}
#[test]
fn test_impl_eq_for_member_function() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct SomeStruct final {
inline bool operator==(const SomeStruct& other) const {
return i == other.i;
}
int i;
};"#,
)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
impl PartialEq for SomeStruct {
#[inline(always)]
fn eq<'a, 'b>(&'a self, other: &'b Self) -> bool {
unsafe { crate::detail::__rust_thunk___ZNK10SomeStructeqERKS_(self, other) }
}
}
}
);
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" bool __rust_thunk___ZNK10SomeStructeqERKS_(
const struct SomeStruct* __this, const struct SomeStruct* other) {
return __this->operator==(*other);
}
}
);
Ok(())
}
#[test]
fn test_impl_eq_for_free_function() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct SomeStruct final { int i; };
bool operator==(const SomeStruct& lhs, const SomeStruct& rhs) {
return lhs.i == rhs.i;
}"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_matches!(
rs_api,
quote! {
impl PartialEq for SomeStruct {
#[inline(always)]
fn eq<'a, 'b>(&'a self, rhs: &'b Self) -> bool {
unsafe { crate::detail::__rust_thunk___ZeqRK10SomeStructS1_(self, rhs) }
}
}
}
);
Ok(())
}
#[test]
fn test_impl_eq_for_free_function_different_types() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct SomeStruct final { int i; };
struct SomeOtherStruct final { int i; };
bool operator==(const SomeStruct& lhs, const SomeOtherStruct& rhs) {
return lhs.i == rhs.i;
}"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_matches!(
rs_api,
quote! {
impl PartialEq<crate::SomeOtherStruct> for SomeStruct {
#[inline(always)]
fn eq<'a, 'b>(&'a self, rhs: &'b crate::SomeOtherStruct) -> bool {
unsafe { crate::detail::__rust_thunk___ZeqRK10SomeStructRK15SomeOtherStruct(self, rhs) }
}
}
}
);
Ok(())
}
#[test]
fn test_impl_eq_for_free_function_by_value() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct SomeStruct final { int i; };
bool operator==(SomeStruct lhs, SomeStruct rhs) {
return lhs.i == rhs.i;
}"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_matches!(
rs_api,
quote! {
impl PartialEq for SomeStruct {
#[inline(always)]
fn eq(& self, rhs: & Self) -> bool {
unsafe { crate::detail::__rust_thunk___Zeq10SomeStructS_(
&mut self.clone(), &mut rhs.clone()) }
}
}
}
);
Ok(())
}
#[test]
fn test_impl_lt_for_member_function() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct SomeStruct final {
inline bool operator==(const SomeStruct& other) const {
return i == other.i;
}
inline bool operator<(const SomeStruct& other) const {
return i < other.i;
}
int i;
};"#,
)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
impl PartialOrd for SomeStruct {
#[inline(always)]
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
if self == other {
return Some(core::cmp::Ordering::Equal);
}
if self < other {
return Some(core::cmp::Ordering::Less);
}
if other < self {
return Some(core::cmp::Ordering::Greater);
}
None
}
#[inline(always)]
fn lt<'a, 'b>(&'a self, other: &'b Self) -> bool {
unsafe { crate::detail::__rust_thunk___ZNK10SomeStructltERKS_(self, other) }
}
}
}
);
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" bool __rust_thunk___ZNK10SomeStructltERKS_(
const struct SomeStruct* __this, const struct SomeStruct* other) {
return __this->operator<(*other);
}
}
);
Ok(())
}
#[test]
fn test_impl_lt_for_free_function() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct SomeStruct final {
inline bool operator==(const SomeStruct& other) const {
return i == other.i;
}
int i;
};
bool operator<(const SomeStruct& lhs, const SomeStruct& rhs) {
return lhs.i < rhs.i;
}"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_matches!(
rs_api,
quote! {
impl PartialOrd for SomeStruct {
#[inline(always)]
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
if self == other {
return Some(core::cmp::Ordering::Equal);
}
if self < other {
return Some(core::cmp::Ordering::Less);
}
if other < self {
return Some(core::cmp::Ordering::Greater);
}
None
}
#[inline(always)]
fn lt<'a, 'b>(&'a self, rhs: &'b Self) -> bool {
unsafe { crate::detail::__rust_thunk___ZltRK10SomeStructS1_(self, rhs) }
}
}
}
);
Ok(())
}
#[test]
fn test_impl_lt_for_free_function_by_value() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct SomeStruct final { int i; };
bool operator==(SomeStruct lhs, SomeStruct rhs) {
return lhs.i == rhs.i;
}
bool operator<(SomeStruct lhs, SomeStruct rhs) {
return lhs.i < rhs.i;
}"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_matches!(
rs_api,
quote! {
impl PartialOrd for SomeStruct {
#[inline(always)]
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
if self == other {
return Some(core::cmp::Ordering::Equal);
}
if self < other {
return Some(core::cmp::Ordering::Less);
}
if other < self {
return Some(core::cmp::Ordering::Greater);
}
None
}
#[inline(always)]
fn lt(& self, rhs: &Self) -> bool {
unsafe { crate::detail::__rust_thunk___Zlt10SomeStructS_(
&mut self.clone(), &mut rhs.clone()) }
}
}
}
);
Ok(())
}
#[test]
fn test_assign() -> Result<()> {
let ir = ir_from_cc(
r#"
#pragma clang lifetime_elision
struct SomeStruct {
~SomeStruct();
SomeStruct& operator=(const SomeStruct& other);
};"#,
)?;
let BindingsTokens { rs_api, .. } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
impl<'b> ::ctor::Assign<&'b Self> for SomeStruct {
#[inline(always)]
fn assign<'a>(self: ::core::pin::Pin<&'a mut Self>, other: &'b Self) {
unsafe {
crate::detail::__rust_thunk___ZN10SomeStructaSERKS_(self, other);
}
}
}
}
);
Ok(())
}
#[test]
fn test_assign_nonreference_other() -> Result<()> {
let ir = ir_from_cc(
r#"
#pragma clang lifetime_elision
struct SomeStruct {
~SomeStruct();
SomeStruct& operator=(int other);
};"#,
)?;
let BindingsTokens { rs_api, .. } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
impl<'b> ::ctor::Assign<&'b Self> for SomeStruct {
#[inline(always)]
fn assign<'a>(self: ::core::pin::Pin<&'a mut Self>, __param_0: &'b Self) {
unsafe {
crate::detail::__rust_thunk___ZN10SomeStructaSERKS_(self, __param_0);
}
}
}
}
);
Ok(())
}
#[test]
fn test_assign_nonreference_return() -> Result<()> {
let ir = ir_from_cc(
r#"
#pragma clang lifetime_elision
struct SomeStruct {
~SomeStruct();
int operator=(const SomeStruct& other);
};"#,
)?;
let BindingsTokens { rs_api, .. } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
impl<'b> ::ctor::Assign<&'b Self> for SomeStruct {
#[inline(always)]
fn assign<'a>(self: ::core::pin::Pin<&'a mut Self>, other: &'b Self) {
unsafe {
crate::detail::__rust_thunk___ZN10SomeStructaSERKS_(self, other);
}
}
}
}
);
Ok(())
}
#[test]
fn test_impl_eq_non_const_member_function() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct SomeStruct final {
bool operator==(const SomeStruct& other) /* no `const` here */;
};"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_not_matches!(rs_api, quote! {impl PartialEq});
Ok(())
}
#[test]
fn test_impl_lt_different_operands() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct SomeStruct1 final {
int i;
};
struct SomeStruct2 final {
inline bool operator==(const SomeStruct1& other) const {
return i == other.i;
}
inline bool operator<(const SomeStruct1& other) const {
return i < other.i;
};
int i;
};"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_not_matches!(rs_api, quote! {impl PartialOrd});
Ok(())
}
#[test]
fn test_impl_lt_non_const_member_function() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct SomeStruct final {
inline bool operator==(const SomeStruct& other) const {
return i == other.i;
}
int i;
bool operator<(const SomeStruct& other) /* no `const` here */;
};"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_not_matches!(rs_api, quote! {impl PartialOrd});
Ok(())
}
#[test]
fn test_impl_lt_rhs_by_value() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct SomeStruct final {
inline bool operator==(const SomeStruct& other) const {
return i == other.i;
}
int i;
bool operator<(SomeStruct other) const;
};"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_not_matches!(rs_api, quote! {impl PartialOrd});
Ok(())
}
#[test]
fn test_impl_lt_missing_eq_impl() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct SomeStruct final {
inline bool operator<(const SomeStruct& other) const {
return i < other.i;
}
int i;
};"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_not_matches!(rs_api, quote! {impl PartialOrd});
Ok(())
}
#[test]
fn test_thunk_ident_function() -> Result<()> {
let ir = ir_from_cc("inline int foo() {}")?;
let func = retrieve_func(&ir, "foo");
assert_eq!(thunk_ident(func), make_rs_ident("__rust_thunk___Z3foov"));
Ok(())
}
#[test]
fn test_thunk_ident_special_names() {
let ir = ir_from_cc("struct Class {};").unwrap();
let destructor =
ir.get_functions_by_name(&UnqualifiedIdentifier::Destructor).next().unwrap();
assert_eq!(thunk_ident(destructor), make_rs_ident("__rust_thunk___ZN5ClassD1Ev"));
let default_constructor = ir
.get_functions_by_name(&UnqualifiedIdentifier::Constructor)
.find(|f| f.params.len() == 1)
.unwrap();
assert_eq!(thunk_ident(default_constructor), make_rs_ident("__rust_thunk___ZN5ClassC1Ev"));
}
#[test]
fn test_elided_lifetimes() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct S final {
int& f(int& i);
};"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_matches!(
rs_api,
quote! {
pub fn f<'a, 'b>(&'a mut self, i: &'b mut ::core::ffi::c_int) -> &'a mut ::core::ffi::c_int { ... }
}
);
assert_rs_matches!(
rs_api,
quote! {
pub(crate) fn __rust_thunk___ZN1S1fERi<'a, 'b>(__this: &'a mut crate::S, i: &'b mut ::core::ffi::c_int)
-> &'a mut ::core::ffi::c_int;
}
);
Ok(())
}
#[test]
fn test_annotated_lifetimes() -> Result<()> {
let ir = ir_from_cc(&with_lifetime_macros(
r#"
int& $a f(int& $a i1, int& $a i2);
"#,
))?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_matches!(
rs_api,
quote! {
pub fn f<'a>(i1: &'a mut ::core::ffi::c_int, i2: &'a mut ::core::ffi::c_int) -> &'a mut ::core::ffi::c_int { ... }
}
);
assert_rs_matches!(
rs_api,
quote! {
pub(crate) fn __rust_thunk___Z1fRiS_<'a>(i1: &'a mut ::core::ffi::c_int, i2: &'a mut ::core::ffi::c_int)
-> &'a mut ::core::ffi::c_int;
}
);
Ok(())
}
#[test]
fn test_format_generic_params() -> Result<()> {
assert!(
format_generic_params(/* lifetimes= */ &[], std::iter::empty::<syn::Ident>())
.is_empty(),
);
let idents = ["T1", "T2"].iter().map(|s| make_rs_ident(s));
assert_rs_matches!(
format_generic_params(/* lifetimes= */ &[], idents),
quote! { < T1, T2 > }
);
let lifetimes = ["a", "b", "_"].iter().map(|s| Lifetime::new(s)).collect::<Vec<_>>();
assert_rs_matches!(
format_generic_params(&lifetimes, std::iter::empty::<syn::Ident>()),
quote! { < 'a, 'b > }
);
Ok(())
}
#[test]
fn test_format_tuple_except_singleton() {
fn format(xs: &[TokenStream]) -> TokenStream {
format_tuple_except_singleton(xs)
}
assert_rs_matches!(format(&[]), quote! {()});
assert_rs_matches!(format(&[quote! {a}]), quote! {a});
assert_rs_matches!(format(&[quote! {a}, quote! {b}]), quote! {(a, b)});
}
#[test]
fn test_overloaded_functions() -> Result<()> {
// TODO(b/213280424): We don't support creating bindings for overloaded
// functions yet, except in the case of overloaded constructors with a
// single parameter.
let ir = ir_from_cc(
r#" #pragma clang lifetime_elision
void f() {}
void f(int i) {}
struct S1 final {
void f() {}
void f(int i) {}
};
struct S2 final {
void f();
};
struct S3 final {
S3(int i);
S3(double d);
};
namespace foo { void not_overloaded(); }
namespace bar { void not_overloaded(); }
"#,
)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
// Cannot overload free functions.
assert_cc_matches!(rs_api, {
let txt = "Generated from: google3/ir_from_cc_virtual_header.h;l=4\n\
Error while generating bindings for item 'f':\n\
Cannot generate bindings for overloaded function";
quote! { __COMMENT__ #txt }
});
assert_rs_not_matches!(rs_api, quote! {pub fn f()});
assert_rs_not_matches!(rs_api, quote! {pub fn f(i: ::core::ffi::c_int)});
assert_cc_matches!(rs_api, {
let txt = "Generated from: google3/ir_from_cc_virtual_header.h;l=7\n\
Error while generating bindings for item 'S1::f':\n\
Cannot generate bindings for overloaded function";
quote! { __COMMENT__ #txt }
});
assert_rs_not_matches!(rs_api, quote! {pub fn f(... S1 ...)});
// And thunks aren't generated for either.
assert_cc_not_matches!(rs_api_impl, quote! {f});
// But we can import member functions that have the same name as a free
// function.
assert_rs_matches!(rs_api, quote! {pub fn f<'a>(&'a mut self)});
// We can also import overloaded single-parameter constructors.
assert_rs_matches!(rs_api, quote! {impl From<::core::ffi::c_int> for S3});
assert_rs_matches!(rs_api, quote! {impl From<f64> for S3});
// And we can import functions that have the same name + signature, but that are
// in 2 different namespaces.
assert_rs_matches!(rs_api, quote! { pub fn not_overloaded() });
Ok(())
}
/// !Unpin references should not be pinned.
#[test]
fn test_nonunpin_ref_param() -> Result<()> {
let rs_api = generate_bindings_tokens(ir_from_cc(
r#"
#pragma clang lifetime_elision
struct S {~S();};
void Function(const S& s);
"#,
)?)?
.rs_api;
assert_rs_matches!(
rs_api,
quote! {
fn Function<'a>(s: &'a crate::S) { ... }
}
);
Ok(())
}
/// !Unpin mut references must be pinned.
#[test]
fn test_nonunpin_mut_param() -> Result<()> {
let rs_api = generate_bindings_tokens(ir_from_cc(
r#"
#pragma clang lifetime_elision
struct S {~S();};
void Function(S& s);
"#,
)?)?
.rs_api;
assert_rs_matches!(
rs_api,
quote! {
fn Function<'a>(s: ::core::pin::Pin<&'a mut crate::S>) { ... }
}
);
Ok(())
}
/// !Unpin &self should not be pinned.
#[test]
fn test_nonunpin_ref_self() -> Result<()> {
let rs_api = generate_bindings_tokens(ir_from_cc(
r#"
#pragma clang lifetime_elision
struct S {
~S();
void Function() const;
};
"#,
)?)?
.rs_api;
assert_rs_matches!(
rs_api,
quote! {
fn Function<'a>(&'a self) { ... }
}
);
Ok(())
}
/// !Unpin &mut self must be pinned.
#[test]
fn test_nonunpin_mut_self() -> Result<()> {
let rs_api = generate_bindings_tokens(ir_from_cc(
r#"
#pragma clang lifetime_elision
struct S {
~S();
void Function();
};
"#,
)?)?
.rs_api;
assert_rs_matches!(
rs_api,
quote! {
fn Function<'a>(self: ::core::pin::Pin<&'a mut Self>) { ... }
}
);
Ok(())
}
/// Drop::drop must not use self : Pin<...>.
#[test]
fn test_nonunpin_drop() -> Result<()> {
let rs_api = generate_bindings_tokens(ir_from_cc(
r#"
struct S {~S();};
"#,
)?)?
.rs_api;
assert_rs_matches!(
rs_api,
quote! {
unsafe fn pinned_drop<'a>(self: ::core::pin::Pin<&'a mut Self>) { ... }
}
);
Ok(())
}
#[test]
fn test_nonunpin_0_arg_constructor() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
// This type must be `!Unpin`.
struct HasConstructor {
explicit HasConstructor() {}
~HasConstructor();
};"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_matches!(rs_api, quote! {#[::ctor::recursively_pinned(PinnedDrop)]});
assert_rs_matches!(
rs_api,
quote! {
impl ::ctor::CtorNew<()> for HasConstructor {
type CtorType = impl ::ctor::Ctor<Output = Self>;
#[inline (always)]
fn ctor_new(args: ()) -> Self::CtorType {
let () = args;
unsafe {
::ctor::FnCtor::new(move |dest: ::core::pin::Pin<&mut ::core::mem::MaybeUninit<Self>>| {
crate::detail::__rust_thunk___ZN14HasConstructorC1Ev(::core::pin::Pin::into_inner_unchecked(dest));
})
}
}
}
}
);
Ok(())
}
#[test]
fn test_nonunpin_1_arg_constructor() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
// This type must be `!Unpin`.
struct HasConstructor {
explicit HasConstructor(unsigned char input) {}
~HasConstructor();
};"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_matches!(rs_api, quote! {#[::ctor::recursively_pinned(PinnedDrop)]});
assert_rs_matches!(
rs_api,
quote! {
impl ::ctor::CtorNew<::core::ffi::c_uchar> for HasConstructor {
type CtorType = impl ::ctor::Ctor<Output = Self>;
#[inline (always)]
fn ctor_new(args: ::core::ffi::c_uchar) -> Self::CtorType {
let input = args;
unsafe {
::ctor::FnCtor::new(move |dest: ::core::pin::Pin<&mut ::core::mem::MaybeUninit<Self>>| {
crate::detail::__rust_thunk___ZN14HasConstructorC1Eh(::core::pin::Pin::into_inner_unchecked(dest), input);
})
}
}
}
}
);
Ok(())
}
#[test]
fn test_nonunpin_2_arg_constructor() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
// This type must be `!Unpin`.
struct HasConstructor {
explicit HasConstructor(unsigned char input1, signed char input2) {}
~HasConstructor();
};"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_matches!(rs_api, quote! {#[::ctor::recursively_pinned(PinnedDrop)]});
assert_rs_matches!(
rs_api,
quote! {
impl ::ctor::CtorNew<(::core::ffi::c_uchar, ::core::ffi::c_schar)> for HasConstructor {
type CtorType = impl ::ctor::Ctor<Output = Self>;
#[inline (always)]
fn ctor_new(args: (::core::ffi::c_uchar, ::core::ffi::c_schar)) -> Self::CtorType {
let (input1, input2) = args;
unsafe {
::ctor::FnCtor::new(move |dest: ::core::pin::Pin<&mut ::core::mem::MaybeUninit<Self>>| {
crate::detail::__rust_thunk___ZN14HasConstructorC1Eha(::core::pin::Pin::into_inner_unchecked(dest), input1, input2);
})
}
}
}
}
);
Ok(())
}
/// Traits which monomorphize the `Ctor` parameter into the caller must
/// synthesize an RvalueReference parameter, with an appropriate
/// lifetime parameter.
#[test]
fn test_nonunpin_by_value_params() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
// This type must be `!Unpin`.
struct HasConstructor {
// int& x is here to create a 'b lifetime, which collides with a synthesized
// lifetime name. But that's OK! We handle collisions!
// (`a` would also work, but that's just because the left hand doesn't know what
// the right is doing: the `a` lifetime is present in some places, but eventually
// removed from the public interface.)
explicit HasConstructor(const int& x, HasConstructor y, HasConstructor b) {}
~HasConstructor();
};"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_matches!(rs_api, quote! {#[::ctor::recursively_pinned(PinnedDrop)]});
assert_rs_matches!(
rs_api,
quote! {
impl <'b, 'y, 'b_2> ::ctor::CtorNew<(
&'b ::core::ffi::c_int,
::ctor::RvalueReference<'y, Self>,
::ctor::RvalueReference<'b_2, Self>)
> for HasConstructor {
// The captures are why we need explicit lifetimes for the two rvalue reference
// parameters.
type CtorType = impl ::ctor::Ctor<Output = Self>
+ ::ctor::Captures<'b>
+ ::ctor::Captures<'y>
+ ::ctor::Captures<'b_2>;
#[inline (always)]
fn ctor_new(args: (
&'b ::core::ffi::c_int,
::ctor::RvalueReference<'y, Self>,
::ctor::RvalueReference<'b_2, Self>)
) -> Self::CtorType {
let (x, y, b) = args;
unsafe {
::ctor::FnCtor::new(move |dest: ::core::pin::Pin<&mut ::core::mem::MaybeUninit<Self>>| {
crate::detail::__rust_thunk___ZN14HasConstructorC1ERKiS_S_(::core::pin::Pin::into_inner_unchecked(dest), x, y, b);
})
}
}
}
}
);
Ok(())
}
#[test]
fn test_nonunpin_return() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
// This type must be `!Unpin`.
struct Nontrivial {~Nontrivial();};
Nontrivial ReturnsByValue(const int& x, const int& y);
"#,
)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
pub fn ReturnsByValue<'a, 'b>(x: &'a ::core::ffi::c_int, y: &'b ::core::ffi::c_int)
-> impl ::ctor::Ctor<Output=crate::Nontrivial>
+ ::ctor::Captures<'a>
+ ::ctor::Captures<'b> {
unsafe {
::ctor::FnCtor::new(move |dest: ::core::pin::Pin<&mut ::core::mem::MaybeUninit<crate::Nontrivial>>| {
crate::detail::__rust_thunk___Z14ReturnsByValueRKiS0_(::core::pin::Pin::into_inner_unchecked(dest), x, y);
})
}
}
}
);
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" void __rust_thunk___Z14ReturnsByValueRKiS0_(
struct Nontrivial* __return, int const* x, int const* y) {
new(__return) auto(ReturnsByValue(*x, *y));
}
}
);
Ok(())
}
#[test]
fn test_nonunpin_const_return() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
// This type must be `!Unpin`.
struct Nontrivial {~Nontrivial();};
const Nontrivial ReturnsByValue(const int& x, const int& y);
"#,
)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
pub fn ReturnsByValue<'a, 'b>(x: &'a ::core::ffi::c_int, y: &'b ::core::ffi::c_int)
-> impl ::ctor::Ctor<Output=crate::Nontrivial>
+ ::ctor::Captures<'a>
+ ::ctor::Captures<'b> {
unsafe {
::ctor::FnCtor::new(move |dest: ::core::pin::Pin<&mut ::core::mem::MaybeUninit<crate::Nontrivial>>| {
crate::detail::__rust_thunk___Z14ReturnsByValueRKiS0_(::core::pin::Pin::into_inner_unchecked(dest), x, y);
})
}
}
}
);
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" void __rust_thunk___Z14ReturnsByValueRKiS0_(
struct Nontrivial* __return, int const* x, int const* y) {
new(__return) auto(ReturnsByValue(*x, *y));
}
}
);
Ok(())
}
#[test]
fn test_unpin_by_value_param() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct Trivial final {
int trivial_field;
};
void foo(Trivial param);
"#,
)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
#[inline(always)]
pub fn foo(mut param: crate::Trivial) {
unsafe { crate::detail::__rust_thunk___Z3foo7Trivial(&mut param) }
}
}
);
assert_rs_matches!(
rs_api,
quote! {
pub(crate) fn __rust_thunk___Z3foo7Trivial(param: &mut crate::Trivial);
}
);
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" void __rust_thunk___Z3foo7Trivial(struct Trivial* param) {
foo(std::move(*param));
}
}
);
Ok(())
}
#[test]
fn test_unpin_by_value_return() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct Trivial final {
int trivial_field;
};
Trivial foo();
"#,
)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
#[inline(always)]
pub fn foo() -> crate::Trivial {
unsafe {
let mut __return = ::core::mem::MaybeUninit::<crate::Trivial>::uninit();
crate::detail::__rust_thunk___Z3foov(&mut __return);
__return.assume_init()
}
}
}
);
assert_rs_matches!(
rs_api,
quote! {
pub(crate) fn __rust_thunk___Z3foov(
__return: &mut ::core::mem::MaybeUninit<crate::Trivial>
);
}
);
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" void __rust_thunk___Z3foov(struct Trivial* __return) {
new (__return) auto(foo());
}
}
);
Ok(())
}
#[test]
fn test_unpin_rvalue_ref_qualified_method() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct TrivialWithRvalueRefQualifiedMethod final {
void rvalue_ref_qualified_method() &&;
};
"#,
)?;
let BindingsTokens { rs_api, .. } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
#[inline(always)]
pub fn rvalue_ref_qualified_method<'a>(self: ::ctor::RvalueReference<'a, Self>) {
unsafe {
crate::detail::__rust_thunk___ZNO35TrivialWithRvalueRefQualifiedMethod27rvalue_ref_qualified_methodEv(self)
}
}
}
);
assert_rs_matches!(
rs_api,
quote! {
#[link_name = "_ZNO35TrivialWithRvalueRefQualifiedMethod27rvalue_ref_qualified_methodEv"]
pub (crate) fn __rust_thunk___ZNO35TrivialWithRvalueRefQualifiedMethod27rvalue_ref_qualified_methodEv < 'a > (__this :
:: ctor :: RvalueReference < 'a , crate :: TrivialWithRvalueRefQualifiedMethod >) ;
}
);
Ok(())
}
#[test]
fn test_unpin_rvalue_ref_const_qualified_method() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct TrivialWithRvalueRefConstQualifiedMethod final {
void rvalue_ref_const_qualified_method() const &&;
};
"#,
)?;
let BindingsTokens { rs_api, .. } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
#[inline(always)]
pub fn rvalue_ref_const_qualified_method<'a>(self: ::ctor::ConstRvalueReference<'a, Self>) {
unsafe {
crate::detail::__rust_thunk___ZNKO40TrivialWithRvalueRefConstQualifiedMethod33rvalue_ref_const_qualified_methodEv(self)
}
}
}
);
assert_rs_matches!(
rs_api,
quote! {
#[link_name = "_ZNKO40TrivialWithRvalueRefConstQualifiedMethod33rvalue_ref_const_qualified_methodEv"]
pub (crate) fn __rust_thunk___ZNKO40TrivialWithRvalueRefConstQualifiedMethod33rvalue_ref_const_qualified_methodEv < 'a > (__this :
:: ctor :: ConstRvalueReference < 'a , crate :: TrivialWithRvalueRefConstQualifiedMethod >) ;
}
);
Ok(())
}
/// Assignment is special in that it discards the return type.
/// So if the return type is !Unpin, it needs to emplace!() it.
#[test]
fn test_nonunpin_return_assign() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
// This type must be `!Unpin`.
struct Nontrivial {
~Nontrivial();
Nontrivial operator=(const Nontrivial& other);
};
"#,
)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
impl<'b> ::ctor::Assign<&'b Self> for Nontrivial {
#[inline(always)]
fn assign<'a>(self: ::core::pin::Pin<&'a mut Self>, other: &'b Self) {
unsafe {
let _ = ::ctor::emplace!(::ctor::FnCtor::new(
move |dest: ::core::pin::Pin<&mut ::core::mem::MaybeUninit<Self>>| {
crate::detail::__rust_thunk___ZN10NontrivialaSERKS_(
::core::pin::Pin::into_inner_unchecked(dest),
self,
other
);
}
));
}
}
}
}
);
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" void __rust_thunk___ZN10NontrivialaSERKS_(
struct Nontrivial* __return, struct Nontrivial* __this,
const struct Nontrivial* other
) {
new(__return) auto(__this->operator=(*other));
}
}
);
Ok(())
}
#[test]
fn test_nonunpin_param() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
// This type must be `!Unpin`.
struct Nontrivial {
Nontrivial(Nontrivial&&);
~Nontrivial();
};
void TakesByValue(Nontrivial x);
"#,
)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
pub fn TakesByValue(x: impl ::ctor::Ctor<Output=crate::Nontrivial>) {
unsafe {
crate::detail::__rust_thunk___Z12TakesByValue10Nontrivial(::core::pin::Pin::into_inner_unchecked(::ctor::emplace!(x)))
}
}
}
);
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" void __rust_thunk___Z12TakesByValue10Nontrivial(struct Nontrivial*x) {
TakesByValue(std::move(*x));
}
}
);
Ok(())
}
#[test]
fn test_nonunpin_trait_param() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
// This type must be `!Unpin`.
struct Nontrivial {
Nontrivial(Nontrivial&&);
Nontrivial& operator=(Nontrivial) {}
~Nontrivial();
};
struct Trivial final {
/*implicit*/ Trivial(Nontrivial) {}
};
"#,
)?;
let rs_api = generate_bindings_tokens(ir)?.rs_api;
assert_rs_matches!(
rs_api,
quote! {
impl<'__param_0> From<::ctor::RvalueReference<'__param_0, crate::Nontrivial>> for Trivial {
#[inline(always)]
fn from(__param_0: ::ctor::RvalueReference<'__param_0, crate::Nontrivial>) -> Self {
let mut tmp = ::core::mem::MaybeUninit::<Self>::zeroed();
unsafe {
crate::detail::__rust_thunk___ZN7TrivialC1E10Nontrivial(
&mut tmp,
__param_0
);
tmp.assume_init()
}
}
}
}
);
Ok(())
}
#[test]
fn test_nonmovable_param() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
// This type must be `!Unpin` and non-move constructible.
struct Nonmovable {
Nonmovable(Nonmovable&&) = delete;
};
void TakesByValue(Nonmovable) {}
"#,
)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
// Bindings for TakesByValue cannot be generated.
assert_rs_not_matches!(rs_api, quote! {TakesByValue});
assert_cc_not_matches!(rs_api_impl, quote! {TakesByValue});
Ok(())
}
#[test]
fn test_function_returning_rvalue_reference() -> Result<()> {
let ir = ir_from_cc(
r#"#pragma clang lifetime_elision
struct SomeStruct final {
// Inline to force generation (and test coverage) of C++ thunks.
inline SomeStruct&& GetRValueReference() {
return static_cast<SomeStruct&&>(*this);
}
int field;
};
"#,
)?;
let BindingsTokens { rs_api, rs_api_impl } = generate_bindings_tokens(ir)?;
assert_rs_matches!(
rs_api,
quote! {
impl SomeStruct {
...
#[inline(always)]
pub fn GetRValueReference<'a>(&'a mut self)
-> ::ctor::RvalueReference<'a, crate::SomeStruct> {
unsafe {
crate::detail::__rust_thunk___ZN10SomeStruct18GetRValueReferenceEv(self)
}
}
}
}
);
assert_rs_matches!(
rs_api,
quote! {
extern "C" {
...
pub(crate) fn __rust_thunk___ZN10SomeStruct18GetRValueReferenceEv<'a>(
__this: &'a mut crate::SomeStruct
) -> ::ctor::RvalueReference<'a, crate::SomeStruct>;
...
}
}
);
// Note that you can't just convert directly from xvalue to lvalue:
//
// return &static_cast<SomeStruct&>(__this->GetRValueReference());
//
// For the above, Clang will emit an error that "non-const lvalue reference to
// type 'struct SomeStruct' cannot bind to a temporary of type
// 'SomeStruct'" (This is somewhat misleading, because there are no
// temporaries here). We must first bind the return value to a name
// (`lvalue` below), so that it becomes an lvalue. Only then can it be
// converted to a pointer.
assert_cc_matches!(
rs_api_impl,
quote! {
extern "C" struct SomeStruct*
__rust_thunk___ZN10SomeStruct18GetRValueReferenceEv(struct SomeStruct* __this) {
struct SomeStruct&& lvalue = __this->GetRValueReference();
return &lvalue;
}
}
);
Ok(())
}
}