| // Part of the Crubit project, under the Apache License v2.0 with LLVM |
| // Exceptions. See /LICENSE for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| |
| #include "nullability/inference/collect_evidence.h" |
| |
| #include <memory> |
| #include <optional> |
| #include <string> |
| #include <string_view> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/container/flat_hash_map.h" |
| #include "absl/log/check.h" |
| #include "nullability/inference/inferable.h" |
| #include "nullability/inference/inference.proto.h" |
| #include "nullability/inference/slot_fingerprint.h" |
| #include "nullability/pointer_nullability.h" |
| #include "nullability/pointer_nullability_analysis.h" |
| #include "nullability/pointer_nullability_lattice.h" |
| #include "nullability/type_nullability.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclBase.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/OperationKinds.h" |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Analysis/CFG.h" |
| #include "clang/Analysis/FlowSensitive/Arena.h" |
| #include "clang/Analysis/FlowSensitive/ControlFlowContext.h" |
| #include "clang/Analysis/FlowSensitive/DataflowAnalysis.h" |
| #include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h" |
| #include "clang/Analysis/FlowSensitive/DataflowEnvironment.h" |
| #include "clang/Analysis/FlowSensitive/Formula.h" |
| #include "clang/Analysis/FlowSensitive/Value.h" |
| #include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/Specifiers.h" |
| #include "clang/Index/USRGeneration.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/FunctionExtras.h" |
| #include "llvm/ADT/STLFunctionalExtras.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| namespace clang::tidy::nullability { |
| using ::clang::dataflow::DataflowAnalysisContext; |
| using ::clang::dataflow::Environment; |
| using ::clang::dataflow::Formula; |
| |
| using ConcreteNullabilityCache = |
| absl::flat_hash_map<const Decl *, |
| std::optional<const PointerTypeNullability>>; |
| |
| std::string_view getOrGenerateUSR(USRCache &Cache, const Decl &Decl) { |
| auto [It, Inserted] = Cache.try_emplace(&Decl); |
| if (Inserted) { |
| llvm::SmallString<128> USR; |
| if (!index::generateUSRForDecl(&Decl, USR)) It->second = USR.str(); |
| } |
| return It->second; |
| } |
| |
| llvm::unique_function<EvidenceEmitter> evidenceEmitter( |
| llvm::unique_function<void(const Evidence &) const> Emit, |
| nullability::USRCache &USRCache) { |
| class EvidenceEmitterImpl { |
| public: |
| EvidenceEmitterImpl( |
| llvm::unique_function<void(const Evidence &) const> Emit, |
| nullability::USRCache &USRCache) |
| : Emit(std::move(Emit)), USRCache(USRCache) {} |
| |
| void operator()(const Decl &Target, Slot S, Evidence::Kind Kind, |
| SourceLocation Loc) const { |
| CHECK(isInferenceTarget(Target)) |
| << "Evidence emitted for a Target which is not an inference target."; |
| |
| Evidence E; |
| E.set_slot(S); |
| E.set_kind(Kind); |
| |
| std::string_view USR = getOrGenerateUSR(USRCache, Target); |
| if (USR.empty()) return; // Can't emit without a USR |
| E.mutable_symbol()->set_usr(USR); |
| |
| // TODO: make collecting and propagating location information optional? |
| auto &SM = |
| Target.getDeclContext()->getParentASTContext().getSourceManager(); |
| // TODO: are macro locations actually useful enough for debugging? |
| // we could leave them out, and make room for non-macro samples. |
| if (Loc = SM.getFileLoc(Loc); Loc.isValid()) |
| E.set_location(Loc.printToString(SM)); |
| |
| Emit(E); |
| } |
| |
| private: |
| llvm::unique_function<void(const Evidence &) const> Emit; |
| nullability::USRCache &USRCache; |
| }; |
| return EvidenceEmitterImpl(std::move(Emit), USRCache); |
| } |
| |
| namespace { |
| |
| // If Element is a dereference, returns its target and location. |
| std::pair<Expr *, SourceLocation> describeDereference( |
| const CFGElement &Element) { |
| if (auto CFGStmt = Element.getAs<clang::CFGStmt>()) { |
| if (auto *Op = dyn_cast<UnaryOperator>(CFGStmt->getStmt()); |
| Op && Op->getOpcode() == UO_Deref) { |
| return {Op->getSubExpr(), Op->getOperatorLoc()}; |
| } |
| if (auto *ME = dyn_cast<MemberExpr>(CFGStmt->getStmt()); |
| ME && ME->isArrow()) { |
| return {ME->getBase(), ME->getOperatorLoc()}; |
| } |
| } |
| return {nullptr, SourceLocation()}; |
| } |
| |
| // Records evidence derived from the assumption that Value is nonnull. |
| // It may be dereferenced, passed as a nonnull param, etc, per EvidenceKind. |
| void collectMustBeNonnullEvidence( |
| const dataflow::PointerValue &Value, const dataflow::Environment &Env, |
| SourceLocation Loc, |
| std::vector<std::pair<PointerTypeNullability, Slot>> &InferableSlots, |
| Evidence::Kind EvidenceKind, llvm::function_ref<EvidenceEmitter> Emit) { |
| auto &A = Env.getDataflowAnalysisContext().arena(); |
| auto *IsNull = getPointerNullState(Value).IsNull; |
| // If `IsNull` is top, we can't infer anything about it. |
| if (IsNull == nullptr) return; |
| auto &NotIsNull = A.makeNot(*IsNull); |
| |
| // If the flow conditions already imply that Value is not null, then we don't |
| // have any new evidence of a necessary annotation. |
| if (Env.proves(NotIsNull)) return; |
| |
| // Otherwise, if an inferable slot being annotated Nonnull would imply that |
| // Value is not null, then we have evidence suggesting that slot should be |
| // annotated. For now, we simply choose the first such slot, sidestepping |
| // complexities around the possibility of multiple such slots, any one of |
| // which would be sufficient if annotated Nonnull. |
| for (auto &[Nullability, Slot] : InferableSlots) { |
| auto &SlotNonnullImpliesValueNonnull = |
| A.makeImplies(Nullability.isNonnull(A), NotIsNull); |
| if (Env.proves(SlotNonnullImpliesValueNonnull)) |
| Emit(*Env.getCurrentFunc(), Slot, EvidenceKind, Loc); |
| } |
| } |
| |
| void collectEvidenceFromDereference( |
| std::vector<std::pair<PointerTypeNullability, Slot>> &InferableSlots, |
| const CFGElement &Element, const dataflow::Environment &Env, |
| llvm::function_ref<EvidenceEmitter> Emit) { |
| auto [Target, Loc] = describeDereference(Element); |
| if (!Target || !Target->getType()->isPointerType()) return; |
| |
| // It is a dereference of a pointer. Now gather evidence from it. |
| |
| // Skip gathering evidence about the current function if the current |
| // function is not an inference target. |
| if (!isInferenceTarget(*Env.getCurrentFunc())) return; |
| |
| dataflow::PointerValue *DereferencedValue = |
| getPointerValueFromExpr(Target, Env); |
| if (!DereferencedValue) return; |
| collectMustBeNonnullEvidence(*DereferencedValue, Env, Loc, InferableSlots, |
| Evidence::UNCHECKED_DEREFERENCE, Emit); |
| } |
| |
| // Inferable slots are nullability slots not explicitly annotated in source |
| // code that we are currently capable of handling. This returns a boolean |
| // constraint representing these slots having a) the nullability inferred from |
| // the previous round for this slot or b) Unknown nullability if no inference |
| // was made in the previous round or there was no previous round. |
| const Formula &getInferableSlotsAsInferredOrUnknownConstraint( |
| std::vector<std::pair<PointerTypeNullability, Slot>> &InferableSlots, |
| USRCache &USRCache, const PreviousInferences &PreviousInferences, |
| dataflow::Arena &A, const Decl &CurrentFunc) { |
| const Formula *Constraint = &A.makeLiteral(true); |
| std::string_view USR = getOrGenerateUSR(USRCache, CurrentFunc); |
| for (auto &[Nullability, Slot] : InferableSlots) { |
| SlotFingerprint Fingerprint = fingerprint(USR, Slot); |
| const Formula &Nullable = PreviousInferences.Nullable.contains(Fingerprint) |
| ? Nullability.isNullable(A) |
| : A.makeNot(Nullability.isNullable(A)); |
| const Formula &Nonnull = PreviousInferences.Nonnull.contains(Fingerprint) |
| ? Nullability.isNonnull(A) |
| : A.makeNot(Nullability.isNonnull(A)); |
| Constraint = &A.makeAnd(*Constraint, A.makeAnd(Nullable, Nonnull)); |
| } |
| return *Constraint; |
| } |
| |
| void collectEvidenceFromBindingToType( |
| TypeNullability &TypeNullability, |
| const dataflow::PointerValue &PointerValue, |
| std::vector<std::pair<PointerTypeNullability, Slot>> |
| &InferableSlotsFromValueContext, |
| const dataflow::Environment &Env, SourceLocation ValueLoc, |
| llvm::function_ref<EvidenceEmitter> Emit) { |
| // TODO: Account for variance and each layer of nullability when we handle |
| // more than top-level pointers. |
| if (TypeNullability.empty()) return; |
| if (TypeNullability[0].concrete() == NullabilityKind::NonNull) { |
| collectMustBeNonnullEvidence(PointerValue, Env, ValueLoc, |
| InferableSlotsFromValueContext, |
| Evidence::BOUND_TO_NONNULL, Emit); |
| } |
| } |
| |
| void collectEvidenceFromCallExpr( |
| std::vector<std::pair<PointerTypeNullability, Slot>> &InferableCallerSlots, |
| const Formula &InferableSlotsConstraint, const CFGElement &Element, |
| const dataflow::Environment &Env, |
| llvm::function_ref<EvidenceEmitter> Emit) { |
| // Is this CFGElement a call to a function? |
| auto CFGStmt = Element.getAs<clang::CFGStmt>(); |
| if (!CFGStmt) return; |
| auto *CallExpr = dyn_cast_or_null<clang::CallExpr>(CFGStmt->getStmt()); |
| if (!CallExpr || !CallExpr->getCalleeDecl()) return; |
| auto *CalleeDecl = |
| dyn_cast_or_null<clang::FunctionDecl>(CallExpr->getCalleeDecl()); |
| if (!CalleeDecl || !isInferenceTarget(*CalleeDecl)) return; |
| |
| unsigned ParamI = 0; |
| unsigned ArgI = 0; |
| // Member operator calls hold the function object as the first argument, |
| // offsetting the indices of parameters and corresponding arguments by 1. |
| // For example: Given struct S { bool operator+(int*); } |
| // The CXXMethodDecl has one parameter, but a call S{}+p is a |
| // CXXOperatorCallExpr with two arguments: an S and an int*. |
| if (isa<clang::CXXOperatorCallExpr>(CallExpr) && |
| isa<clang::CXXMethodDecl>(CalleeDecl)) |
| ++ArgI; |
| |
| // For each pointer parameter of the callee, ... |
| for (; ParamI < CalleeDecl->param_size(); ++ParamI, ++ArgI) { |
| auto ParamType = |
| CalleeDecl->getParamDecl(ParamI)->getType().getNonReferenceType(); |
| if (!isSupportedPointerType(ParamType)) continue; |
| // the corresponding argument should also be a pointer. |
| CHECK(isSupportedPointerType(CallExpr->getArg(ArgI)->getType())); |
| |
| dataflow::PointerValue *PV = |
| getPointerValueFromExpr(CallExpr->getArg(ArgI), Env); |
| if (!PV) continue; |
| |
| SourceLocation ArgLoc = CallExpr->getArg(ArgI)->getExprLoc(); |
| |
| // TODO: Include inferred annotations from previous rounds when propagating. |
| auto ParamNullability = getNullabilityAnnotationsFromType(ParamType); |
| |
| // Collect evidence from the binding of the argument to the parameter's |
| // nullability, if known. |
| collectEvidenceFromBindingToType(ParamNullability, *PV, |
| InferableCallerSlots, Env, ArgLoc, Emit); |
| |
| // Emit evidence of the parameter's nullability. First, calculate that |
| // nullability based on InferableSlots for the caller being assigned to |
| // Unknown or their previously-inferred value, to reflect the current |
| // annotations and not all possible annotations for them. |
| NullabilityKind ArgNullability = |
| getNullability(*PV, Env, &InferableSlotsConstraint); |
| Evidence::Kind ArgEvidenceKind; |
| switch (ArgNullability) { |
| case NullabilityKind::Nullable: |
| ArgEvidenceKind = Evidence::NULLABLE_ARGUMENT; |
| break; |
| case NullabilityKind::NonNull: |
| ArgEvidenceKind = Evidence::NONNULL_ARGUMENT; |
| break; |
| default: |
| ArgEvidenceKind = Evidence::UNKNOWN_ARGUMENT; |
| } |
| Emit(*CalleeDecl, paramSlot(ParamI), ArgEvidenceKind, ArgLoc); |
| } |
| } |
| |
| void collectEvidenceFromReturn( |
| std::vector<std::pair<PointerTypeNullability, Slot>> &InferableSlots, |
| const Formula &InferableSlotsConstraint, const CFGElement &Element, |
| const dataflow::Environment &Env, |
| llvm::function_ref<EvidenceEmitter> Emit) { |
| // Is this CFGElement a return statement? |
| auto CFGStmt = Element.getAs<clang::CFGStmt>(); |
| if (!CFGStmt) return; |
| auto *ReturnStmt = dyn_cast_or_null<clang::ReturnStmt>(CFGStmt->getStmt()); |
| if (!ReturnStmt) return; |
| auto *ReturnExpr = ReturnStmt->getRetValue(); |
| if (!ReturnExpr || !isSupportedPointerType(ReturnExpr->getType())) return; |
| |
| // Skip gathering evidence about the current function if the current function |
| // is not an inference target. |
| if (!isInferenceTarget(*Env.getCurrentFunc())) return; |
| |
| NullabilityKind ReturnNullability = |
| getNullability(ReturnExpr, Env, &InferableSlotsConstraint); |
| Evidence::Kind ReturnEvidenceKind; |
| switch (ReturnNullability) { |
| case NullabilityKind::Nullable: |
| ReturnEvidenceKind = Evidence::NULLABLE_RETURN; |
| break; |
| case NullabilityKind::NonNull: |
| ReturnEvidenceKind = Evidence::NONNULL_RETURN; |
| break; |
| default: |
| ReturnEvidenceKind = Evidence::UNKNOWN_RETURN; |
| } |
| Emit(*Env.getCurrentFunc(), SLOT_RETURN_TYPE, ReturnEvidenceKind, |
| ReturnExpr->getExprLoc()); |
| } |
| |
| void collectEvidenceFromAssignment( |
| std::vector<std::pair<PointerTypeNullability, Slot>> &InferableSlots, |
| const CFGElement &Element, const dataflow::Environment &Env, |
| llvm::function_ref<EvidenceEmitter> Emit) { |
| auto CFGStmt = Element.getAs<clang::CFGStmt>(); |
| if (!CFGStmt) return; |
| |
| // Initialization of new decl. |
| if (auto *DeclStmt = dyn_cast_or_null<clang::DeclStmt>(CFGStmt->getStmt())) { |
| for (auto *Decl : DeclStmt->decls()) { |
| if (auto *VarDecl = dyn_cast_or_null<clang::VarDecl>(Decl); |
| VarDecl && isSupportedPointerType(VarDecl->getType()) && |
| VarDecl->hasInit()) { |
| auto *PV = getPointerValueFromExpr(VarDecl->getInit(), Env); |
| if (!PV) return; |
| TypeNullability TypeNullability = |
| getNullabilityAnnotationsFromType(VarDecl->getType()); |
| collectEvidenceFromBindingToType(TypeNullability, *PV, InferableSlots, |
| Env, VarDecl->getInit()->getExprLoc(), |
| Emit); |
| } |
| } |
| } |
| |
| // Assignment to existing decl. |
| if (auto *BinaryOperator = |
| dyn_cast_or_null<clang::BinaryOperator>(CFGStmt->getStmt()); |
| BinaryOperator && BinaryOperator->isAssignmentOp() && |
| isSupportedPointerType(BinaryOperator->getLHS()->getType())) { |
| auto *PV = getPointerValueFromExpr(BinaryOperator->getRHS(), Env); |
| if (!PV) return; |
| TypeNullability TypeNullability = |
| getNullabilityAnnotationsFromType(BinaryOperator->getLHS()->getType()); |
| collectEvidenceFromBindingToType(TypeNullability, *PV, InferableSlots, Env, |
| BinaryOperator->getRHS()->getExprLoc(), |
| Emit); |
| } |
| } |
| |
| void collectEvidenceFromElement( |
| std::vector<std::pair<PointerTypeNullability, Slot>> InferableSlots, |
| const Formula &InferableSlotsConstraint, const CFGElement &Element, |
| const Environment &Env, llvm::function_ref<EvidenceEmitter> Emit) { |
| collectEvidenceFromDereference(InferableSlots, Element, Env, Emit); |
| collectEvidenceFromCallExpr(InferableSlots, InferableSlotsConstraint, Element, |
| Env, Emit); |
| collectEvidenceFromReturn(InferableSlots, InferableSlotsConstraint, Element, |
| Env, Emit); |
| collectEvidenceFromAssignment(InferableSlots, Element, Env, Emit); |
| // TODO: add more heuristic collections here |
| } |
| |
| std::optional<Evidence::Kind> evidenceKindFromDeclaredType(QualType T) { |
| if (!isSupportedPointerType(T.getNonReferenceType())) return std::nullopt; |
| auto Nullability = getNullabilityAnnotationsFromType(T); |
| switch (Nullability.front().concrete()) { |
| default: |
| return std::nullopt; |
| case NullabilityKind::NonNull: |
| return Evidence::ANNOTATED_NONNULL; |
| case NullabilityKind::Nullable: |
| return Evidence::ANNOTATED_NULLABLE; |
| } |
| } |
| |
| // Returns a function that the analysis can use to override Decl nullability |
| // values from the source code being analyzed with previously inferred |
| // nullabilities. |
| // |
| // In practice, this should only override the default nullability for Decls that |
| // do not spell out a nullability in source code, because we only pass in |
| // inferences from the previous round which are non-trivial and annotations |
| // "inferred" by reading an annotation from source code in the previous round |
| // were marked trivial. |
| auto getConcreteNullabilityOverrideFromPreviousInferences( |
| ConcreteNullabilityCache &Cache, USRCache &USRCache, |
| const PreviousInferences &PreviousInferences) { |
| return [&](const Decl &D) -> std::optional<const PointerTypeNullability *> { |
| auto [It, Inserted] = Cache.try_emplace(&D); |
| if (Inserted) { |
| std::optional<const Decl *> fingerprintedDecl; |
| Slot Slot; |
| if (auto *FD = clang::dyn_cast_or_null<FunctionDecl>(&D)) { |
| fingerprintedDecl = (ValueDecl *)FD; |
| Slot = SLOT_RETURN_TYPE; |
| } else if (auto *PD = clang::dyn_cast_or_null<ParmVarDecl>(&D)) { |
| if (auto *Parent = clang::dyn_cast_or_null<FunctionDecl>( |
| PD->getParentFunctionOrMethod())) { |
| fingerprintedDecl = (ValueDecl *)Parent; |
| Slot = paramSlot(PD->getFunctionScopeIndex()); |
| } |
| } |
| if (!fingerprintedDecl) return std::nullopt; |
| auto fp = |
| fingerprint(getOrGenerateUSR(USRCache, **fingerprintedDecl), Slot); |
| if (PreviousInferences.Nullable.contains(fp)) { |
| It->second.emplace(NullabilityKind::Nullable); |
| } else if (PreviousInferences.Nonnull.contains(fp)) { |
| It->second.emplace(NullabilityKind::NonNull); |
| } else { |
| It->second = std::nullopt; |
| } |
| } |
| if (!It->second) return std::nullopt; |
| return &*It->second; |
| }; |
| } |
| } // namespace |
| |
| llvm::Error collectEvidenceFromImplementation( |
| const Decl &Decl, llvm::function_ref<EvidenceEmitter> Emit, |
| USRCache &USRCache, const PreviousInferences PreviousInferences) { |
| const FunctionDecl *Func = dyn_cast<FunctionDecl>(&Decl); |
| if (!Func || !Func->doesThisDeclarationHaveABody()) { |
| return llvm::createStringError( |
| llvm::inconvertibleErrorCode(), |
| "Implementation must be a function with a body."); |
| } |
| |
| llvm::Expected<dataflow::ControlFlowContext> ControlFlowContext = |
| dataflow::ControlFlowContext::build(*Func); |
| if (!ControlFlowContext) return ControlFlowContext.takeError(); |
| |
| DataflowAnalysisContext AnalysisContext( |
| std::make_unique<dataflow::WatchedLiteralsSolver>(100000)); |
| Environment Environment(AnalysisContext, *Func); |
| PointerNullabilityAnalysis Analysis( |
| Decl.getDeclContext()->getParentASTContext()); |
| std::vector<std::pair<PointerTypeNullability, Slot>> InferableSlots; |
| auto Parameters = Func->parameters(); |
| for (auto I = 0; I < Parameters.size(); ++I) { |
| auto T = Parameters[I]->getType().getNonReferenceType(); |
| if (isSupportedPointerType(T) && !evidenceKindFromDeclaredType(T)) { |
| InferableSlots.push_back( |
| std::make_pair(Analysis.assignNullabilityVariable( |
| Parameters[I], AnalysisContext.arena()), |
| paramSlot(I))); |
| } |
| } |
| const auto &InferableSlotsConstraint = |
| getInferableSlotsAsInferredOrUnknownConstraint( |
| InferableSlots, USRCache, PreviousInferences, AnalysisContext.arena(), |
| Decl); |
| |
| ConcreteNullabilityCache ConcreteNullabilityCache; |
| Analysis.assignNullabilityOverride( |
| getConcreteNullabilityOverrideFromPreviousInferences( |
| ConcreteNullabilityCache, USRCache, PreviousInferences)); |
| |
| return dataflow::runDataflowAnalysis( |
| *ControlFlowContext, Analysis, Environment, |
| [&](const CFGElement &Element, |
| const dataflow::DataflowAnalysisState< |
| PointerNullabilityLattice> &State) { |
| collectEvidenceFromElement(InferableSlots, |
| InferableSlotsConstraint, Element, |
| State.Env, Emit); |
| }) |
| .takeError(); |
| } |
| |
| void collectEvidenceFromTargetDeclaration( |
| const clang::Decl &D, llvm::function_ref<EvidenceEmitter> Emit) { |
| // For now, we can only describe the nullability of functions. |
| const auto *Fn = dyn_cast<clang::FunctionDecl>(&D); |
| if (!Fn) return; |
| |
| if (auto K = evidenceKindFromDeclaredType(Fn->getReturnType())) |
| Emit(*Fn, SLOT_RETURN_TYPE, *K, Fn->getReturnTypeSourceRange().getBegin()); |
| for (unsigned I = 0; I < Fn->param_size(); ++I) { |
| if (auto K = evidenceKindFromDeclaredType(Fn->getParamDecl(I)->getType())) |
| Emit(*Fn, paramSlot(I), *K, Fn->getParamDecl(I)->getTypeSpecStartLoc()); |
| } |
| } |
| |
| EvidenceSites EvidenceSites::discover(ASTContext &Ctx) { |
| struct Walker : public RecursiveASTVisitor<Walker> { |
| EvidenceSites Out; |
| |
| // We do want to see concrete code, including function instantiations. |
| bool shouldVisitTemplateInstantiations() const { return true; } |
| |
| bool VisitFunctionDecl(const FunctionDecl *FD) { |
| if (isInferenceTarget(*FD)) Out.Declarations.push_back(FD); |
| |
| // Visiting template instantiations is fine, these are valid functions! |
| // But we'll be limited in what we can infer. |
| bool IsUsefulImplementation = |
| FD->doesThisDeclarationHaveABody() && |
| // We will not get anywhere with dependent code. |
| !FD->isDependentContext(); |
| if (IsUsefulImplementation) Out.Implementations.push_back(FD); |
| |
| return true; |
| } |
| }; |
| |
| Walker W; |
| W.TraverseAST(Ctx); |
| return std::move(W.Out); |
| } |
| |
| } // namespace clang::tidy::nullability |