| // Part of the Crubit project, under the Apache License v2.0 with LLVM |
| // Exceptions. See /LICENSE for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| |
| #include "nullability_verification/pointer_nullability_analysis.h" |
| |
| #include <optional> |
| #include <string> |
| |
| #include "absl/log/check.h" |
| #include "nullability_verification/pointer_nullability.h" |
| #include "nullability_verification/pointer_nullability_lattice.h" |
| #include "nullability_verification/pointer_nullability_matchers.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTDumper.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/OperationKinds.h" |
| #include "clang/AST/Stmt.h" |
| #include "clang/AST/Type.h" |
| #include "clang/ASTMatchers/ASTMatchFinder.h" |
| #include "clang/Analysis/FlowSensitive/CFGMatchSwitch.h" |
| #include "clang/Analysis/FlowSensitive/DataflowEnvironment.h" |
| #include "clang/Analysis/FlowSensitive/Value.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/Specifiers.h" |
| |
| namespace clang { |
| namespace tidy { |
| namespace nullability { |
| |
| using ast_matchers::MatchFinder; |
| using dataflow::BoolValue; |
| using dataflow::CFGMatchSwitchBuilder; |
| using dataflow::Environment; |
| using dataflow::PointerValue; |
| using dataflow::SkipPast; |
| using dataflow::TransferState; |
| using dataflow::Value; |
| |
| namespace { |
| |
| std::vector<NullabilityKind> prepend(NullabilityKind Head, |
| ArrayRef<NullabilityKind> Tail) { |
| std::vector<NullabilityKind> Result = {Head}; |
| Result.insert(Result.end(), Tail.begin(), Tail.end()); |
| return Result; |
| } |
| |
| void computeNullability(const Expr* E, |
| TransferState<PointerNullabilityLattice>& State, |
| std::function<std::vector<NullabilityKind>()> Compute) { |
| (void)State.Lattice.insertExprNullabilityIfAbsent(E, [&] { |
| auto Nullability = Compute(); |
| if (unsigned ExpectedSize = countPointersInType(E); |
| ExpectedSize != Nullability.size()) { |
| // A nullability vector must have one entry per pointer in the type. |
| // If this is violated, we probably failed to handle some AST node. |
| llvm::dbgs() |
| << "=== Nullability vector has wrong number of entries: ===\n"; |
| llvm::dbgs() << "Expression: \n"; |
| dump(E, llvm::dbgs()); |
| llvm::dbgs() << "\nNullability (" << Nullability.size() |
| << " pointers): " << nullabilityToString(Nullability) |
| << "\n"; |
| llvm::dbgs() << "\nType (" << ExpectedSize << " pointers): \n"; |
| dump(exprType(E), llvm::dbgs()); |
| llvm::dbgs() << "=================================\n"; |
| |
| // We can't meaningfully interpret the vector, so discard it. |
| // TODO: fix all broken cases and upgrade to CHECK or DCHECK or so. |
| Nullability.assign(ExpectedSize, NullabilityKind::Unspecified); |
| } |
| return Nullability; |
| }); |
| } |
| |
| /// Compute the nullability annotation of type `T`, which contains types |
| /// originally written as a class template type parameter. |
| /// |
| /// Example: |
| /// |
| /// \code |
| /// template <typename F, typename S> |
| /// struct pair { |
| /// S *_Nullable getNullablePtrToSecond(); |
| /// }; |
| /// \endcode |
| /// |
| /// Consider the following member call: |
| /// |
| /// \code |
| /// pair<int *, int *_Nonnull> x; |
| /// x.getNullablePtrToSecond(); |
| /// \endcode |
| /// |
| /// The class template specialization `x` has the following substitutions: |
| /// |
| /// F=int *, whose nullability is [_Unspecified] |
| /// S=int * _Nonnull, whose nullability is [_Nonnull] |
| /// |
| /// The return type of the member call `x.getNullablePtrToSecond()` is |
| /// S * _Nullable. |
| /// |
| /// When we call `substituteNullabilityAnnotationsInClassTemplate` with the type |
| /// `S * _Nullable` and the `base` node of the member call (in this case, a |
| /// `DeclRefExpr`), it returns the nullability of the given type after applying |
| /// substitutions, which in this case is [_Nullable, _Nonnull]. |
| std::vector<NullabilityKind> substituteNullabilityAnnotationsInClassTemplate( |
| QualType T, ArrayRef<NullabilityKind> BaseNullabilityAnnotations, |
| QualType BaseType) { |
| return getNullabilityAnnotationsFromType( |
| T, |
| [&](const SubstTemplateTypeParmType* ST) |
| -> std::optional<std::vector<NullabilityKind>> { |
| // The class specialization that is BaseType and owns ST. |
| const ClassTemplateSpecializationDecl* Specialization = nullptr; |
| if (auto RT = BaseType->getAs<RecordType>()) |
| Specialization = |
| dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); |
| // TODO: handle nested templates, where associated decl != base type |
| // (e.g. PointerNullabilityTest.MemberFunctionTemplateOfTemplateStruct) |
| if (!Specialization || Specialization != ST->getAssociatedDecl()) |
| return std::nullopt; |
| |
| unsigned ArgIndex = ST->getIndex(); |
| auto TemplateArgs = Specialization->getTemplateArgs().asArray(); |
| |
| unsigned PointerCount = 0; |
| for (auto TA : TemplateArgs.take_front(ArgIndex)) { |
| PointerCount += countPointersInType(TA); |
| } |
| unsigned SliceSize = countPointersInType(TemplateArgs[ArgIndex]); |
| return BaseNullabilityAnnotations.slice(PointerCount, SliceSize).vec(); |
| }); |
| } |
| |
| /// Compute nullability annotations of `T`, which might contain template type |
| /// variable substitutions bound by the call `CE`. |
| /// |
| /// Example: |
| /// |
| /// \code |
| /// template<typename F, typename S> |
| /// std::pair<S, F> flip(std::pair<F, S> p); |
| /// \endcode |
| /// |
| /// Consider the following CallExpr: |
| /// |
| /// \code |
| /// flip<int * _Nonnull, int * _Nullable>(std::make_pair(&x, &y)); |
| /// \endcode |
| /// |
| /// This CallExpr has the following substitutions: |
| /// F=int * _Nonnull, whose nullability is [_Nonnull] |
| /// S=int * _Nullable, whose nullability is [_Nullable] |
| /// |
| /// The return type of this CallExpr is `std::pair<S, F>`. |
| /// |
| /// When we call `substituteNullabilityAnnotationsInFunctionTemplate` with the |
| /// type `std::pair<S, F>` and the above CallExpr, it returns the nullability |
| /// the given type after applying substitutions, which in this case is |
| /// [_Nullable, _Nonnull]. |
| std::vector<NullabilityKind> substituteNullabilityAnnotationsInFunctionTemplate( |
| QualType T, const CallExpr* CE) { |
| return getNullabilityAnnotationsFromType( |
| T, |
| [&](const SubstTemplateTypeParmType* ST) |
| -> std::optional<std::vector<NullabilityKind>> { |
| // TODO: Handle calls that use template argument deduction. |
| // TODO: Handle nested templates (...->getDepth() > 0). |
| if (auto* DRE = |
| dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreImpCasts()); |
| ST->getReplacedParameter()->getDepth() == 0 && |
| DRE->hasExplicitTemplateArgs()) { |
| return getNullabilityAnnotationsFromType( |
| DRE->template_arguments()[ST->getIndex()] |
| .getTypeSourceInfo() |
| ->getType()); |
| } |
| return std::nullopt; |
| }); |
| } |
| |
| NullabilityKind getPointerNullability(const Expr* E, |
| PointerNullabilityAnalysis::Lattice& L) { |
| QualType ExprType = E->getType(); |
| std::optional<NullabilityKind> Nullability = ExprType->getNullability(); |
| |
| // If the expression's type does not contain nullability information, it may |
| // be a template instantiation. Look up the nullability in the |
| // `ExprToNullability` map. |
| if (Nullability.value_or(NullabilityKind::Unspecified) == |
| NullabilityKind::Unspecified) { |
| if (auto MaybeNullability = L.getExprNullability(E)) { |
| if (!MaybeNullability->empty()) { |
| // Return the nullability of the topmost pointer in the type. |
| Nullability = (*MaybeNullability)[0]; |
| } |
| } |
| } |
| return Nullability.value_or(NullabilityKind::Unspecified); |
| } |
| |
| void initPointerFromAnnotations( |
| PointerValue& PointerVal, const Expr* E, |
| TransferState<PointerNullabilityLattice>& State) { |
| NullabilityKind Nullability = getPointerNullability(E, State.Lattice); |
| switch (Nullability) { |
| case NullabilityKind::NonNull: |
| initNotNullPointer(PointerVal, State.Env); |
| break; |
| case NullabilityKind::Nullable: |
| initNullablePointer(PointerVal, State.Env); |
| break; |
| default: |
| initUnknownPointer(PointerVal, State.Env); |
| } |
| } |
| |
| void transferFlowSensitiveNullPointer( |
| const Expr* NullPointer, const MatchFinder::MatchResult&, |
| TransferState<PointerNullabilityLattice>& State) { |
| if (auto* PointerVal = getPointerValueFromExpr(NullPointer, State.Env)) { |
| initNullPointer(*PointerVal, State.Env); |
| } |
| } |
| |
| void transferFlowSensitiveNotNullPointer( |
| const Expr* NotNullPointer, const MatchFinder::MatchResult&, |
| TransferState<PointerNullabilityLattice>& State) { |
| if (auto* PointerVal = getPointerValueFromExpr(NotNullPointer, State.Env)) { |
| initNotNullPointer(*PointerVal, State.Env); |
| } |
| } |
| |
| void transferFlowSensitivePointer( |
| const Expr* PointerExpr, const MatchFinder::MatchResult& Result, |
| TransferState<PointerNullabilityLattice>& State) { |
| if (auto* PointerVal = getPointerValueFromExpr(PointerExpr, State.Env)) { |
| initPointerFromAnnotations(*PointerVal, PointerExpr, State); |
| } |
| } |
| |
| // TODO(b/233582219): Implement promotion of nullability knownness for initially |
| // unknown pointers when there is evidence that it is nullable, for example |
| // when the pointer is compared to nullptr, or casted to boolean. |
| void transferFlowSensitiveNullCheckComparison( |
| const BinaryOperator* BinaryOp, const MatchFinder::MatchResult& result, |
| TransferState<PointerNullabilityLattice>& State) { |
| // Boolean representing the comparison between the two pointer values, |
| // automatically created by the dataflow framework. |
| auto& PointerComparison = |
| *cast<BoolValue>(State.Env.getValue(*BinaryOp, SkipPast::None)); |
| |
| CHECK(BinaryOp->getOpcode() == BO_EQ || BinaryOp->getOpcode() == BO_NE); |
| auto& PointerEQ = BinaryOp->getOpcode() == BO_EQ |
| ? PointerComparison |
| : State.Env.makeNot(PointerComparison); |
| auto& PointerNE = BinaryOp->getOpcode() == BO_EQ |
| ? State.Env.makeNot(PointerComparison) |
| : PointerComparison; |
| |
| auto* LHS = getPointerValueFromExpr(BinaryOp->getLHS(), State.Env); |
| auto* RHS = getPointerValueFromExpr(BinaryOp->getRHS(), State.Env); |
| |
| if (!LHS || !RHS) return; |
| |
| auto [LHSKnown, LHSNull] = getPointerNullState(*LHS, State.Env); |
| auto [RHSKnown, RHSNull] = getPointerNullState(*RHS, State.Env); |
| auto& LHSKnownNotNull = |
| State.Env.makeAnd(LHSKnown, State.Env.makeNot(LHSNull)); |
| auto& RHSKnownNotNull = |
| State.Env.makeAnd(RHSKnown, State.Env.makeNot(RHSNull)); |
| auto& LHSKnownNull = State.Env.makeAnd(LHSKnown, LHSNull); |
| auto& RHSKnownNull = State.Env.makeAnd(RHSKnown, RHSNull); |
| |
| // nullptr == nullptr |
| State.Env.addToFlowCondition(State.Env.makeImplication( |
| State.Env.makeAnd(LHSKnownNull, RHSKnownNull), PointerEQ)); |
| // nullptr != notnull |
| State.Env.addToFlowCondition(State.Env.makeImplication( |
| State.Env.makeAnd(LHSKnownNull, RHSKnownNotNull), PointerNE)); |
| // notnull != nullptr |
| State.Env.addToFlowCondition(State.Env.makeImplication( |
| State.Env.makeAnd(LHSKnownNotNull, RHSKnownNull), PointerNE)); |
| } |
| |
| void transferFlowSensitiveNullCheckImplicitCastPtrToBool( |
| const Expr* CastExpr, const MatchFinder::MatchResult&, |
| TransferState<PointerNullabilityLattice>& State) { |
| auto* PointerVal = |
| getPointerValueFromExpr(CastExpr->IgnoreImplicit(), State.Env); |
| if (!PointerVal) return; |
| |
| auto [PointerKnown, PointerNull] = |
| getPointerNullState(*PointerVal, State.Env); |
| auto& CastExprLoc = State.Env.createStorageLocation(*CastExpr); |
| State.Env.setValue(CastExprLoc, State.Env.makeNot(PointerNull)); |
| State.Env.setStorageLocation(*CastExpr, CastExprLoc); |
| } |
| |
| void transferFlowSensitiveCallExpr( |
| const CallExpr* CallExpr, const MatchFinder::MatchResult& Result, |
| TransferState<PointerNullabilityLattice>& State) { |
| auto ReturnType = CallExpr->getType(); |
| if (!ReturnType->isAnyPointerType()) return; |
| |
| auto* PointerVal = getPointerValueFromExpr(CallExpr, State.Env); |
| if (!PointerVal) { |
| PointerVal = cast<PointerValue>(State.Env.createValue(ReturnType)); |
| auto& CallExprLoc = State.Env.createStorageLocation(*CallExpr); |
| State.Env.setValue(CallExprLoc, *PointerVal); |
| State.Env.setStorageLocation(*CallExpr, CallExprLoc); |
| } |
| initPointerFromAnnotations(*PointerVal, CallExpr, State); |
| } |
| |
| void transferNonFlowSensitiveDeclRefExpr( |
| const DeclRefExpr* DRE, const MatchFinder::MatchResult& MR, |
| TransferState<PointerNullabilityLattice>& State) { |
| computeNullability(DRE, State, [&] { |
| return getNullabilityAnnotationsFromType(DRE->getType()); |
| }); |
| } |
| |
| void transferNonFlowSensitiveMemberExpr( |
| const MemberExpr* ME, const MatchFinder::MatchResult& MR, |
| TransferState<PointerNullabilityLattice>& State) { |
| computeNullability(ME, State, [&]() { |
| auto BaseNullability = getNullabilityForChild(ME->getBase(), State); |
| QualType MemberType = ME->getType(); |
| // When a MemberExpr is a part of a member function call |
| // (a child of CXXMemberCallExpr), the MemberExpr models a |
| // partially-applied member function, which isn't a real C++ construct. |
| // The AST does not provide rich type information for such MemberExprs. |
| // Instead, the AST specifies a placeholder type, specifically |
| // BuiltinType::BoundMember. So we have to look at the type of the member |
| // function declaration. |
| if (ME->hasPlaceholderType(BuiltinType::BoundMember)) { |
| MemberType = ME->getMemberDecl()->getType(); |
| } |
| return substituteNullabilityAnnotationsInClassTemplate( |
| MemberType, BaseNullability, ME->getBase()->getType()); |
| }); |
| } |
| |
| void transferNonFlowSensitiveMemberCallExpr( |
| const CXXMemberCallExpr* MCE, const MatchFinder::MatchResult& MR, |
| TransferState<PointerNullabilityLattice>& State) { |
| computeNullability(MCE, State, [&]() { |
| return getNullabilityForChild(MCE->getCallee(), State).vec(); |
| }); |
| } |
| |
| void transferNonFlowSensitiveCastExpr( |
| const CastExpr* CE, const MatchFinder::MatchResult& MR, |
| TransferState<PointerNullabilityLattice>& State) { |
| // TODO: Handle casts where the input and output types can have different |
| // numbers of pointers, and therefore different nullability. For example, a |
| // reinterpret_cast from `int *` to int. |
| computeNullability(CE, State, [&]() { |
| return getNullabilityForChild(CE->getSubExpr(), State).vec(); |
| }); |
| } |
| |
| void transferNonFlowSensitiveMaterializeTemporaryExpr( |
| const MaterializeTemporaryExpr* MTE, const MatchFinder::MatchResult& MR, |
| TransferState<PointerNullabilityLattice>& State) { |
| computeNullability(MTE, State, [&]() { |
| return getNullabilityForChild(MTE->getSubExpr(), State).vec(); |
| }); |
| } |
| |
| void transferNonFlowSensitiveCallExpr( |
| const CallExpr* CE, const MatchFinder::MatchResult& MR, |
| TransferState<PointerNullabilityLattice>& State) { |
| // TODO: Check CallExpr arguments in the diagnoser against the nullability of |
| // parameters. |
| computeNullability(CE, State, [&]() { |
| return substituteNullabilityAnnotationsInFunctionTemplate(CE->getType(), |
| CE); |
| }); |
| } |
| |
| void transferNonFlowSensitiveUnaryOperator( |
| const UnaryOperator* UO, const MatchFinder::MatchResult& MR, |
| TransferState<PointerNullabilityLattice>& State) { |
| computeNullability(UO, State, [&]() -> std::vector<NullabilityKind> { |
| switch (UO->getOpcode()) { |
| case UO_AddrOf: |
| return prepend(NullabilityKind::NonNull, |
| getNullabilityForChild(UO->getSubExpr(), State)); |
| case UO_Deref: |
| return getNullabilityForChild(UO->getSubExpr(), State) |
| .drop_front() |
| .vec(); |
| |
| case UO_PostInc: |
| case UO_PostDec: |
| case UO_PreInc: |
| case UO_PreDec: |
| case UO_Plus: |
| case UO_Minus: |
| case UO_Not: |
| case UO_LNot: |
| case UO_Real: |
| case UO_Imag: |
| case UO_Extension: |
| return getNullabilityForChild(UO->getSubExpr(), State); |
| |
| case UO_Coawait: |
| // TODO: work out what to do here! |
| return unspecifiedNullability(UO); |
| } |
| }); |
| } |
| |
| auto buildNonFlowSensitiveTransferer() { |
| return CFGMatchSwitchBuilder<TransferState<PointerNullabilityLattice>>() |
| .CaseOfCFGStmt<DeclRefExpr>(ast_matchers::declRefExpr(), |
| transferNonFlowSensitiveDeclRefExpr) |
| .CaseOfCFGStmt<MemberExpr>(ast_matchers::memberExpr(), |
| transferNonFlowSensitiveMemberExpr) |
| .CaseOfCFGStmt<CXXMemberCallExpr>(ast_matchers::cxxMemberCallExpr(), |
| transferNonFlowSensitiveMemberCallExpr) |
| .CaseOfCFGStmt<CastExpr>(ast_matchers::castExpr(), |
| transferNonFlowSensitiveCastExpr) |
| .CaseOfCFGStmt<MaterializeTemporaryExpr>( |
| ast_matchers::materializeTemporaryExpr(), |
| transferNonFlowSensitiveMaterializeTemporaryExpr) |
| .CaseOfCFGStmt<CallExpr>(ast_matchers::callExpr(), |
| transferNonFlowSensitiveCallExpr) |
| .CaseOfCFGStmt<UnaryOperator>(ast_matchers::unaryOperator(), |
| transferNonFlowSensitiveUnaryOperator) |
| .Build(); |
| } |
| |
| auto buildFlowSensitiveTransferer() { |
| return CFGMatchSwitchBuilder<TransferState<PointerNullabilityLattice>>() |
| // Handles initialization of the null states of pointers. |
| .CaseOfCFGStmt<Expr>(isCXXThisExpr(), transferFlowSensitiveNotNullPointer) |
| .CaseOfCFGStmt<Expr>(isAddrOf(), transferFlowSensitiveNotNullPointer) |
| .CaseOfCFGStmt<Expr>(isNullPointerLiteral(), |
| transferFlowSensitiveNullPointer) |
| .CaseOfCFGStmt<CallExpr>(isCallExpr(), transferFlowSensitiveCallExpr) |
| .CaseOfCFGStmt<Expr>(isPointerExpr(), transferFlowSensitivePointer) |
| // Handles comparison between 2 pointers. |
| .CaseOfCFGStmt<BinaryOperator>(isPointerCheckBinOp(), |
| transferFlowSensitiveNullCheckComparison) |
| // Handles checking of pointer as boolean. |
| .CaseOfCFGStmt<Expr>(isImplicitCastPointerToBool(), |
| transferFlowSensitiveNullCheckImplicitCastPtrToBool) |
| .Build(); |
| } |
| } // namespace |
| |
| PointerNullabilityAnalysis::PointerNullabilityAnalysis(ASTContext& Context) |
| : DataflowAnalysis<PointerNullabilityAnalysis, PointerNullabilityLattice>( |
| Context), |
| NonFlowSensitiveTransferer(buildNonFlowSensitiveTransferer()), |
| FlowSensitiveTransferer(buildFlowSensitiveTransferer()) {} |
| |
| void PointerNullabilityAnalysis::transfer(const CFGElement& Elt, |
| PointerNullabilityLattice& Lattice, |
| Environment& Env) { |
| TransferState<PointerNullabilityLattice> State(Lattice, Env); |
| NonFlowSensitiveTransferer(Elt, getASTContext(), State); |
| FlowSensitiveTransferer(Elt, getASTContext(), State); |
| } |
| |
| BoolValue& mergeBoolValues(BoolValue& Bool1, const Environment& Env1, |
| BoolValue& Bool2, const Environment& Env2, |
| Environment& MergedEnv) { |
| if (&Bool1 == &Bool2) { |
| return Bool1; |
| } |
| |
| auto& MergedBool = MergedEnv.makeAtomicBoolValue(); |
| |
| // If `Bool1` and `Bool2` is constrained to the same true / false value, |
| // `MergedBool` can be constrained similarly without needing to consider the |
| // path taken - this simplifies the flow condition tracked in `MergedEnv`. |
| // Otherwise, information about which path was taken is used to associate |
| // `MergedBool` with `Bool1` and `Bool2`. |
| if (Env1.flowConditionImplies(Bool1) && Env2.flowConditionImplies(Bool2)) { |
| MergedEnv.addToFlowCondition(MergedBool); |
| } else if (Env1.flowConditionImplies(Env1.makeNot(Bool1)) && |
| Env2.flowConditionImplies(Env2.makeNot(Bool2))) { |
| MergedEnv.addToFlowCondition(MergedEnv.makeNot(MergedBool)); |
| } else { |
| // TODO(b/233582219): Flow conditions are not necessarily mutually |
| // exclusive, a fix is in order: https://reviews.llvm.org/D130270. Update |
| // this section when the patch is commited. |
| auto& FC1 = Env1.getFlowConditionToken(); |
| auto& FC2 = Env2.getFlowConditionToken(); |
| MergedEnv.addToFlowCondition(MergedEnv.makeOr( |
| MergedEnv.makeAnd(FC1, MergedEnv.makeIff(MergedBool, Bool1)), |
| MergedEnv.makeAnd(FC2, MergedEnv.makeIff(MergedBool, Bool2)))); |
| } |
| return MergedBool; |
| } |
| |
| bool PointerNullabilityAnalysis::merge(QualType Type, const Value& Val1, |
| const Environment& Env1, |
| const Value& Val2, |
| const Environment& Env2, |
| Value& MergedVal, |
| Environment& MergedEnv) { |
| if (!Type->isAnyPointerType()) { |
| return false; |
| } |
| |
| auto [Known1, Null1] = getPointerNullState(cast<PointerValue>(Val1), Env1); |
| auto [Known2, Null2] = getPointerNullState(cast<PointerValue>(Val2), Env2); |
| |
| auto& Known = mergeBoolValues(Known1, Env1, Known2, Env2, MergedEnv); |
| auto& Null = mergeBoolValues(Null1, Env1, Null2, Env2, MergedEnv); |
| |
| initPointerNullState(cast<PointerValue>(MergedVal), MergedEnv, &Known, &Null); |
| |
| return true; |
| } |
| } // namespace nullability |
| } // namespace tidy |
| } // namespace clang |