blob: 349f111f782a9bd16a05735b7ca0508da0993ccd [file] [log] [blame]
// Part of the Crubit project, under the Apache License v2.0 with LLVM
// Exceptions. See /LICENSE for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//! Types and deserialization logic for IR. See docs in
//! `rs_bindings_from_cc/ir.h` for more
//! information.
use arc_anyhow::{anyhow, bail, ensure, Context, Error, Result};
use code_gen_utils::{make_rs_ident, NamespaceQualifier};
use once_cell::unsync::OnceCell;
use proc_macro2::{Ident, TokenStream};
use quote::{quote, ToTokens};
use serde::Deserialize;
use std::collections::hash_map::{Entry, HashMap};
use std::fmt::{self, Debug, Display, Formatter};
use std::hash::{Hash, Hasher};
use std::io::Read;
use std::rc::Rc;
/// Common data about all items.
pub trait GenericItem {
fn id(&self) -> ItemId;
/// The name of the item, readable by programmers.
///
/// For example, `void Foo();` should have name `Foo`.
fn debug_name(&self, ir: &IR) -> Rc<str>;
/// The recorded source location, or None if none is present.
fn source_loc(&self) -> Option<Rc<str>>;
/// A human-readable list of unknown attributes, or None if all attributes
/// were understood.
fn unknown_attr(&self) -> Option<Rc<str>>;
}
impl<T> GenericItem for Rc<T>
where
T: GenericItem + ?Sized,
{
fn id(&self) -> ItemId {
(**self).id()
}
fn debug_name(&self, ir: &IR) -> Rc<str> {
(**self).debug_name(ir)
}
fn source_loc(&self) -> Option<Rc<str>> {
(**self).source_loc()
}
fn unknown_attr(&self) -> Option<Rc<str>> {
(**self).unknown_attr()
}
}
/// Deserialize `IR` from JSON given as a reader.
pub fn deserialize_ir<R: Read>(reader: R) -> Result<IR> {
let flat_ir = serde_json::from_reader(reader)?;
Ok(make_ir(flat_ir))
}
/// Create a testing `IR` instance from given parts. This function does not use
/// any mock values.
pub fn make_ir_from_parts<CrubitFeatures>(
items: Vec<Item>,
public_headers: Vec<HeaderName>,
current_target: BazelLabel,
top_level_item_ids: Vec<ItemId>,
crate_root_path: Option<Rc<str>>,
crubit_features: HashMap<BazelLabel, CrubitFeatures>,
) -> IR
where
CrubitFeatures: Into<flagset::FlagSet<CrubitFeature>>,
{
make_ir(FlatIR {
public_headers,
current_target,
items,
top_level_item_ids,
crate_root_path,
crubit_features: crubit_features
.into_iter()
.map(|(label, features)| (label, CrubitFeaturesIR(features.into())))
.collect(),
})
}
fn make_ir(flat_ir: FlatIR) -> IR {
let mut used_decl_ids = HashMap::new();
for item in &flat_ir.items {
if let Some(existing_decl) = used_decl_ids.insert(item.id(), item) {
panic!("Duplicate decl_id found in {:?} and {:?}", existing_decl, item);
}
}
let item_id_to_item_idx = flat_ir
.items
.iter()
.enumerate()
.map(|(idx, item)| (item.id(), idx))
.collect::<HashMap<_, _>>();
let mut lifetimes: HashMap<LifetimeId, LifetimeName> = HashMap::new();
for item in &flat_ir.items {
let lifetime_params = match item {
Item::Record(record) => &record.lifetime_params,
Item::Func(func) => &func.lifetime_params,
_ => continue,
};
for lifetime in lifetime_params {
match lifetimes.entry(lifetime.id) {
Entry::Occupied(occupied) => {
panic!(
"Duplicate use of lifetime ID {:?} in item {item:?} for names: '{}, '{}",
lifetime.id,
&occupied.get().name,
&lifetime.name
)
}
Entry::Vacant(vacant) => {
vacant.insert(lifetime.clone());
}
}
}
}
let mut namespace_id_to_number_of_reopened_namespaces = HashMap::new();
let mut reopened_namespace_id_to_idx = HashMap::new();
flat_ir
.items
.iter()
.filter_map(|item| match item {
Item::Namespace(ns) if ns.owning_target == flat_ir.current_target => {
Some((ns.canonical_namespace_id, ns.id))
}
_ => None,
})
.for_each(|(canonical_id, id)| {
let current_count =
*namespace_id_to_number_of_reopened_namespaces.entry(canonical_id).or_insert(0);
reopened_namespace_id_to_idx.insert(id, current_count);
namespace_id_to_number_of_reopened_namespaces.insert(canonical_id, current_count + 1);
});
let mut function_name_to_functions = HashMap::<UnqualifiedIdentifier, Vec<Rc<Func>>>::new();
flat_ir
.items
.iter()
.filter_map(|item| match item {
Item::Func(func) => Some(func),
_ => None,
})
.for_each(|f| {
function_name_to_functions.entry(f.name.clone()).or_default().push(f.clone());
});
IR {
flat_ir,
item_id_to_item_idx,
lifetimes,
namespace_id_to_number_of_reopened_namespaces,
reopened_namespace_id_to_idx,
function_name_to_functions,
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct HeaderName {
pub name: Rc<str>,
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy, Deserialize)]
#[serde(deny_unknown_fields)]
#[serde(transparent)]
pub struct LifetimeId(pub i32);
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct LifetimeName {
pub name: Rc<str>,
pub id: LifetimeId,
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct RsType {
pub name: Option<Rc<str>>,
pub lifetime_args: Rc<[LifetimeId]>,
pub type_args: Rc<[RsType]>,
pub unknown_attr: Option<Rc<str>>,
pub decl_id: Option<ItemId>,
}
impl RsType {
pub fn is_unit_type(&self) -> bool {
self.name.as_deref() == Some("()")
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct CcType {
pub name: Option<Rc<str>>,
pub is_const: bool,
pub type_args: Vec<CcType>,
pub decl_id: Option<ItemId>,
}
pub trait TypeWithDeclId {
fn decl_id(&self) -> Option<ItemId>;
}
impl TypeWithDeclId for RsType {
fn decl_id(&self) -> Option<ItemId> {
self.decl_id
}
}
impl TypeWithDeclId for CcType {
fn decl_id(&self) -> Option<ItemId> {
self.decl_id
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct MappedType {
pub rs_type: RsType,
pub cc_type: CcType,
}
#[derive(PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct Identifier {
pub identifier: Rc<str>,
}
impl Display for Identifier {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.identifier)
}
}
impl Debug for Identifier {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "\"{}\"", self.identifier)
}
}
#[derive(Debug, PartialEq, Eq, Hash, Copy, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct IntegerConstant {
pub is_negative: bool,
pub wrapped_value: u64,
}
#[derive(PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct Operator {
pub name: Rc<str>,
}
impl Operator {
pub fn cc_name(&self) -> String {
let separator = match self.name.chars().next() {
Some(c) if c.is_alphabetic() => " ",
_ => "",
};
format!("operator{separator}{name}", separator = separator, name = self.name)
}
}
impl Debug for Operator {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "\"{}\"", self.cc_name())
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy, Deserialize)]
#[serde(transparent)]
pub struct ItemId(usize);
impl ItemId {
pub fn new_for_testing(value: usize) -> Self {
Self(value)
}
}
impl ToTokens for ItemId {
fn to_tokens(&self, tokens: &mut TokenStream) {
proc_macro2::Literal::usize_unsuffixed(self.0).to_tokens(tokens)
}
}
/// A Bazel label, e.g. `//foo:bar`.
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(transparent)]
pub struct BazelLabel(pub Rc<str>);
impl BazelLabel {
/// Returns the target name. E.g. `bar` for `//foo:bar`.
pub fn target_name(&self) -> &str {
if let Some((_package, target_name)) = self.0.split_once(':') {
return target_name;
}
if let Some((_, last_package_component)) = self.0.rsplit_once('/') {
return last_package_component;
}
&self.0
}
fn package_name(&self) -> &str {
self.0.rsplit_once(':').unwrap_or((&self.0, "")).0
}
fn last_package_component(&self) -> &str {
self.package_name().rsplit_once('/').unwrap_or(("", "")).1
}
// TODO(b/216587072): Remove this hacky escaping and use the import! macro once
// available.
// For now, use the simple escaping scheme of mapping all invalid characters
// to underscore, instead of the one similar to `convert_to_cc_identifier`, so
// that the escaped target name doesn't become longer (rustc currently produces
// .o artifacts that repeat the target name twice, which can easily cause
// the path length of artifacts to exceed the limit of the file system.)
pub fn target_name_escaped(&self) -> String {
let mut target_name = self.target_name().to_owned();
if target_name == "core" {
target_name = "core_".to_owned() + self.last_package_component();
} else if target_name.starts_with(char::is_numeric) {
target_name.insert(0, 'n');
}
target_name.replace(|c: char| !c.is_ascii_alphanumeric(), "_")
}
// Returns the bazel label as a valid C++ identifier, with a leading underscore.
// Non-alphanumeric characters are escaped as `_xx`, where `xx` is the the byte
// as hexadecimal.
//
// For instance, `//foo` becomes `__2f_2ffoo`.
pub fn convert_to_cc_identifier(&self) -> String {
use std::fmt::Write;
let mut result = "_".to_string();
result.reserve_exact(self.0.len().checked_mul(2).unwrap_or(self.0.len()));
// This is yet another escaping scheme... :-/ Compare this with
// https://github.com/bazelbuild/rules_rust/blob/1f2e6231de29d8fad8d21486f0d16403632700bf/rust/private/utils.bzl#L459-L586
for b in self.0.bytes() {
if (b as char).is_ascii_alphanumeric() {
result.push(b as char);
} else {
write!(result, "_{b:02x}").unwrap();
}
}
result.shrink_to_fit();
#[cfg(debug_assertions)]
for c in result.chars() {
debug_assert!(
c.is_ascii_alphanumeric() || c == '_',
"invalid result identifier: {result:?}"
);
}
result
}
}
impl<T: Into<String>> From<T> for BazelLabel {
fn from(label: T) -> Self {
Self(label.into().into())
}
}
impl Display for BazelLabel {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", &*self.0)
}
}
#[derive(PartialEq, Eq, Hash, Clone, Deserialize)]
pub enum UnqualifiedIdentifier {
Identifier(Identifier),
Operator(Operator),
Constructor,
Destructor,
}
impl UnqualifiedIdentifier {
pub fn identifier_as_str(&self) -> Option<&str> {
match self {
UnqualifiedIdentifier::Identifier(identifier) => Some(identifier.identifier.as_ref()),
_ => None,
}
}
}
impl Debug for UnqualifiedIdentifier {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
UnqualifiedIdentifier::Identifier(identifier) => Debug::fmt(identifier, f),
UnqualifiedIdentifier::Operator(op) => Debug::fmt(op, f),
UnqualifiedIdentifier::Constructor => f.write_str("Constructor"),
UnqualifiedIdentifier::Destructor => f.write_str("Destructor"),
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Deserialize)]
pub enum ReferenceQualification {
LValue,
RValue,
Unqualified,
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct InstanceMethodMetadata {
pub reference: ReferenceQualification,
pub is_const: bool,
pub is_virtual: bool,
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct MemberFuncMetadata {
pub record_id: ItemId,
pub instance_method_metadata: Option<InstanceMethodMetadata>,
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct FuncParam {
#[serde(rename(deserialize = "type"))]
pub type_: MappedType,
pub identifier: Identifier,
/// A human-readable list of attributes that Crubit doesn't understand.
///
/// Because attributes can change the behavior or semantics of function
/// parameters in ways that may affect interop, we default-closed and
/// do not expose functions with unknown attributes.
///
/// One notable example is `lifetimebound`, which we might expect to map
/// to Rust lifetimes.
pub unknown_attr: Option<Rc<str>>,
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct Func {
pub name: UnqualifiedIdentifier,
pub owning_target: BazelLabel,
pub mangled_name: Rc<str>,
pub doc_comment: Option<Rc<str>>,
pub return_type: MappedType,
pub params: Vec<FuncParam>,
/// For tests and internal use only.
///
/// Prefer to reconstruct the lifetime params from the parameter types, as
/// needed. This allows new parameters and lifetimes to be added that were
/// not originally part of the IR.
pub lifetime_params: Vec<LifetimeName>,
pub is_inline: bool,
pub member_func_metadata: Option<MemberFuncMetadata>,
pub is_extern_c: bool,
pub is_noreturn: bool,
/// The `[[nodiscard("...")]]` string. If `[[nodiscard]]`, then the empty
/// string is used.
pub nodiscard: Option<Rc<str>>,
/// The `[[deprecated("...")]]` string. If `[[deprecated]]`, then the empty
/// string is used.
pub deprecated: Option<Rc<str>>,
/// A human-readable list of attributes that Crubit doesn't understand.
///
/// Because attributes can change the behavior or semantics of functions in
/// fairly significant ways, and in ways that may affect interop, we
/// default-closed and do not expose functions with unknown attributes.
pub unknown_attr: Option<Rc<str>>,
pub has_c_calling_convention: bool,
pub is_member_or_descendant_of_class_template: bool,
pub source_loc: Rc<str>,
pub id: ItemId,
pub enclosing_item_id: Option<ItemId>,
pub adl_enclosing_record: Option<ItemId>,
}
impl GenericItem for Func {
fn id(&self) -> ItemId {
self.id
}
fn debug_name(&self, ir: &IR) -> Rc<str> {
let record: Option<Rc<str>> = ir.record_for_member_func(self).map(|r| r.debug_name(ir));
let record: Option<&str> = record.as_deref();
let func_name = match &self.name {
UnqualifiedIdentifier::Identifier(id) => id.identifier.to_string(),
UnqualifiedIdentifier::Operator(op) => op.cc_name(),
UnqualifiedIdentifier::Destructor => {
format!("~{}", record.expect("destructor must be associated with a record"))
}
UnqualifiedIdentifier::Constructor => {
record.expect("constructor must be associated with a record").to_string()
}
};
if let Some(record_name) = record {
format!("{}::{}", record_name, func_name).into()
} else {
func_name.into()
}
}
fn source_loc(&self) -> Option<Rc<str>> {
Some(self.source_loc.clone())
}
fn unknown_attr(&self) -> Option<Rc<str>> {
self.unknown_attr.clone()
}
}
impl Func {
pub fn is_instance_method(&self) -> bool {
self.member_func_metadata
.as_ref()
.filter(|meta| meta.instance_method_metadata.is_some())
.is_some()
}
}
#[derive(Debug, PartialEq, Eq, Hash, Copy, Clone, Deserialize)]
pub enum AccessSpecifier {
Public,
Protected,
Private,
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct Field {
pub identifier: Option<Identifier>,
pub doc_comment: Option<Rc<str>>,
#[serde(rename(deserialize = "type"))]
pub type_: Result<MappedType, String>,
pub access: AccessSpecifier,
pub offset: usize,
pub size: usize,
/// A human-readable list of attributes that Crubit doesn't understand.
pub unknown_attr: Option<Rc<str>>,
pub is_no_unique_address: bool,
pub is_bitfield: bool,
// TODO(kinuko): Consider removing this, it is a duplicate of the same information
// in `Record`.
pub is_inheritable: bool,
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
pub enum SpecialMemberFunc {
Trivial,
NontrivialMembers,
NontrivialUserDefined,
Unavailable,
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct BaseClass {
pub base_record_id: ItemId,
pub offset: Option<i64>,
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct IncompleteRecord {
pub cc_name: Rc<str>,
pub rs_name: Rc<str>,
pub id: ItemId,
pub owning_target: BazelLabel,
/// A human-readable list of attributes that Crubit doesn't understand.
///
/// Because attributes can change the behavior or semantics of types in
/// fairly significant ways, and in ways that may affect interop, we
/// default-closed and do not expose functions with unknown attributes.
pub unknown_attr: Option<Rc<str>>,
pub record_type: RecordType,
pub enclosing_item_id: Option<ItemId>,
}
impl GenericItem for IncompleteRecord {
fn id(&self) -> ItemId {
self.id
}
fn debug_name(&self, _: &IR) -> Rc<str> {
self.cc_name.clone()
}
fn source_loc(&self) -> Option<Rc<str>> {
None
}
fn unknown_attr(&self) -> Option<Rc<str>> {
self.unknown_attr.clone()
}
}
#[derive(Debug, PartialEq, Eq, Hash, Copy, Clone, Deserialize)]
pub enum RecordType {
Struct,
Union,
Class,
}
impl ToTokens for RecordType {
fn to_tokens(&self, tokens: &mut TokenStream) {
let tag = match self {
RecordType::Struct => quote! { struct },
RecordType::Union => quote! { union },
RecordType::Class => quote! { class },
};
tag.to_tokens(tokens)
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct SizeAlign {
pub size: usize,
pub alignment: usize,
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct Record {
pub rs_name: Rc<str>,
pub cc_name: Rc<str>,
pub mangled_cc_name: Rc<str>,
pub id: ItemId,
pub owning_target: BazelLabel,
/// The target containing the template definition, if this is a templated
/// record type.
pub defining_target: Option<BazelLabel>,
/// A human-readable list of attributes that Crubit doesn't understand.
///
/// Because attributes can change the behavior or semantics of types in
/// fairly significant ways, and in ways that may affect interop, we
/// default-closed and do not expose functions with unknown attributes.
pub unknown_attr: Option<Rc<str>>,
pub doc_comment: Option<Rc<str>>,
pub source_loc: Rc<str>,
pub unambiguous_public_bases: Vec<BaseClass>,
pub fields: Vec<Field>,
pub lifetime_params: Vec<LifetimeName>,
pub size_align: SizeAlign,
pub is_derived_class: bool,
pub override_alignment: bool,
pub copy_constructor: SpecialMemberFunc,
pub move_constructor: SpecialMemberFunc,
pub destructor: SpecialMemberFunc,
pub is_trivial_abi: bool,
pub is_inheritable: bool,
pub is_abstract: bool,
pub record_type: RecordType,
pub is_aggregate: bool,
pub is_anon_record_with_typedef: bool,
pub child_item_ids: Vec<ItemId>,
pub enclosing_item_id: Option<ItemId>,
}
impl GenericItem for Record {
fn id(&self) -> ItemId {
self.id
}
fn debug_name(&self, _: &IR) -> Rc<str> {
self.cc_name.clone()
}
fn source_loc(&self) -> Option<Rc<str>> {
Some(self.source_loc.clone())
}
fn unknown_attr(&self) -> Option<Rc<str>> {
self.unknown_attr.clone()
}
}
impl Record {
/// Whether this type has Rust-like object semantics for mutating
/// assignment, and can be passed by mut reference as a result.
///
/// If a type `T` is mut reference safe, it can be possed as a `&mut T`
/// safely. Otherwise, mutable references must use `Pin<&mut T>`.
///
/// In C++, this is called "trivially relocatable". Such types can be passed
/// by value and have their memory directly mutated by Rust using
/// memcpy-like assignment/swap.
///
/// Described in more detail at: docs/unpin
pub fn is_unpin(&self) -> bool {
self.is_trivial_abi
}
pub fn is_union(&self) -> bool {
match self.record_type {
RecordType::Union => true,
RecordType::Struct | RecordType::Class => false,
}
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct Enum {
pub identifier: Identifier,
pub id: ItemId,
pub owning_target: BazelLabel,
pub source_loc: Rc<str>,
pub underlying_type: MappedType,
/// The enumerators. If None, this is a forward-declared (opaque) enum.
///
/// That is, the difference between `enum X : int {};` and `enum X : int;`
/// is that the former has `Some(vec![])` for the enumerators, while the
/// latter has `None`.
pub enumerators: Option<Vec<Enumerator>>,
/// A human-readable list of attributes that Crubit doesn't understand.
pub unknown_attr: Option<Rc<str>>,
pub enclosing_item_id: Option<ItemId>,
}
impl GenericItem for Enum {
fn id(&self) -> ItemId {
self.id
}
fn debug_name(&self, _: &IR) -> Rc<str> {
self.identifier.identifier.clone()
}
fn source_loc(&self) -> Option<Rc<str>> {
Some(self.source_loc.clone())
}
fn unknown_attr(&self) -> Option<Rc<str>> {
self.unknown_attr.clone()
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct Enumerator {
pub identifier: Identifier,
pub value: IntegerConstant,
/// A human-readable list of attributes that Crubit doesn't understand.
pub unknown_attr: Option<Rc<str>>,
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct TypeAlias {
pub identifier: Identifier,
pub id: ItemId,
pub owning_target: BazelLabel,
pub doc_comment: Option<Rc<str>>,
/// A human-readable list of attributes that Crubit doesn't understand.
pub unknown_attr: Option<Rc<str>>,
pub underlying_type: MappedType,
pub source_loc: Rc<str>,
pub enclosing_item_id: Option<ItemId>,
}
impl GenericItem for TypeAlias {
fn id(&self) -> ItemId {
self.id
}
fn debug_name(&self, _: &IR) -> Rc<str> {
self.identifier.identifier.clone()
}
fn source_loc(&self) -> Option<Rc<str>> {
Some(self.source_loc.clone())
}
fn unknown_attr(&self) -> Option<Rc<str>> {
self.unknown_attr.clone()
}
}
impl Display for TypeAlias {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{} ({}, {})", self.identifier, self.owning_target, self.source_loc)
}
}
/// A wrapper type that does not contribute to equality or hashing. All
/// instances are equal.
#[derive(Clone, Copy, Default)]
struct IgnoredField<T>(T);
impl<T> Debug for IgnoredField<T> {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "_")
}
}
impl<T> PartialEq for IgnoredField<T> {
fn eq(&self, _other: &Self) -> bool {
true
}
}
impl<T> Eq for IgnoredField<T> {}
impl<T> Hash for IgnoredField<T> {
fn hash<H: Hasher>(&self, _state: &mut H) {}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct UnsupportedItem {
pub name: Rc<str>,
message: Rc<str>,
pub source_loc: Option<Rc<str>>,
pub id: ItemId,
#[serde(skip)]
cause: IgnoredField<OnceCell<Error>>,
}
impl GenericItem for UnsupportedItem {
fn id(&self) -> ItemId {
self.id
}
fn debug_name(&self, _: &IR) -> Rc<str> {
self.name.clone()
}
fn source_loc(&self) -> Option<Rc<str>> {
self.source_loc.clone()
}
fn unknown_attr(&self) -> Option<Rc<str>> {
None
}
}
impl UnsupportedItem {
fn new(ir: &IR, item: &impl GenericItem, message: Rc<str>, cause: Option<Error>) -> Self {
Self {
name: item.debug_name(ir),
message,
source_loc: item.source_loc(),
id: item.id(),
cause: IgnoredField(cause.map(OnceCell::from).unwrap_or_default()),
}
}
pub fn new_with_message(ir: &IR, item: &impl GenericItem, message: impl Into<Rc<str>>) -> Self {
Self::new(ir, item, message.into(), None)
}
pub fn new_with_cause(ir: &IR, item: &impl GenericItem, cause: Error) -> Self {
Self::new(ir, item, format!("{cause:#}").into(), Some(cause))
}
pub fn message(&self) -> &str {
self.message.as_ref()
}
pub fn cause(&self) -> &Error {
self.cause.0.get_or_init(|| anyhow!(self.message.as_ref().to_owned()))
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct Comment {
pub text: Rc<str>,
pub id: ItemId,
}
impl GenericItem for Comment {
fn id(&self) -> ItemId {
self.id
}
fn debug_name(&self, _: &IR) -> Rc<str> {
"comment".into()
}
fn source_loc(&self) -> Option<Rc<str>> {
None
}
fn unknown_attr(&self) -> Option<Rc<str>> {
None
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct Namespace {
pub name: Identifier,
pub id: ItemId,
pub canonical_namespace_id: ItemId,
/// A human-readable list of attributes that Crubit doesn't understand.
pub unknown_attr: Option<Rc<str>>,
pub owning_target: BazelLabel,
#[serde(default)]
pub child_item_ids: Vec<ItemId>,
pub enclosing_item_id: Option<ItemId>,
pub is_inline: bool,
}
impl GenericItem for Namespace {
fn id(&self) -> ItemId {
self.id
}
fn debug_name(&self, _: &IR) -> Rc<str> {
self.name.to_string().into()
}
fn source_loc(&self) -> Option<Rc<str>> {
None
}
fn unknown_attr(&self) -> Option<Rc<str>> {
self.unknown_attr.clone()
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct UseMod {
pub path: Rc<str>,
pub mod_name: Identifier,
pub id: ItemId,
}
impl GenericItem for UseMod {
fn id(&self) -> ItemId {
self.id
}
fn debug_name(&self, _: &IR) -> Rc<str> {
format!("[internal] use mod {}::* = {}", self.mod_name, self.path).into()
}
fn source_loc(&self) -> Option<Rc<str>> {
None
}
fn unknown_attr(&self) -> Option<Rc<str>> {
None
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
#[serde(deny_unknown_fields)]
pub struct TypeMapOverride {
pub rs_name: Rc<str>,
pub cc_name: Rc<str>,
pub owning_target: BazelLabel,
pub size_align: Option<SizeAlign>,
pub is_same_abi: bool,
pub id: ItemId,
}
impl GenericItem for TypeMapOverride {
fn id(&self) -> ItemId {
self.id
}
fn debug_name(&self, _: &IR) -> Rc<str> {
self.cc_name.clone()
}
fn source_loc(&self) -> Option<Rc<str>> {
None
}
fn unknown_attr(&self) -> Option<Rc<str>> {
None
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone, Deserialize)]
pub enum Item {
Func(Rc<Func>),
IncompleteRecord(Rc<IncompleteRecord>),
Record(Rc<Record>),
Enum(Rc<Enum>),
TypeAlias(Rc<TypeAlias>),
UnsupportedItem(Rc<UnsupportedItem>),
Comment(Rc<Comment>),
Namespace(Rc<Namespace>),
UseMod(Rc<UseMod>),
TypeMapOverride(Rc<TypeMapOverride>),
}
macro_rules! forward_item {
(match $item:ident { _($item_name:ident) => $expr:expr $(,)? }) => {
match $item {
Item::Func($item_name) => $expr,
Item::IncompleteRecord($item_name) => $expr,
Item::Record($item_name) => $expr,
Item::Enum($item_name) => $expr,
Item::TypeAlias($item_name) => $expr,
Item::UnsupportedItem($item_name) => $expr,
Item::Comment($item_name) => $expr,
Item::Namespace($item_name) => $expr,
Item::UseMod($item_name) => $expr,
Item::TypeMapOverride($item_name) => $expr,
}
};
}
impl GenericItem for Item {
fn id(&self) -> ItemId {
forward_item! {
match self {
_(x) => x.id()
}
}
}
fn debug_name(&self, ir: &IR) -> Rc<str> {
forward_item! {
match self {
_(x) => x.debug_name(ir)
}
}
}
fn source_loc(&self) -> Option<Rc<str>> {
forward_item! {
match self {
_(x) => x.source_loc()
}
}
}
fn unknown_attr(&self) -> Option<Rc<str>> {
forward_item! {
match self {
_(x) => x.unknown_attr()
}
}
}
}
impl Item {
pub fn enclosing_item_id(&self) -> Option<ItemId> {
match self {
Item::Record(record) => record.enclosing_item_id,
Item::IncompleteRecord(record) => record.enclosing_item_id,
Item::Enum(enum_) => enum_.enclosing_item_id,
Item::Func(func) => func.enclosing_item_id,
Item::Namespace(namespace) => namespace.enclosing_item_id,
Item::TypeAlias(type_alias) => type_alias.enclosing_item_id,
Item::Comment(..) => None,
Item::UnsupportedItem(..) => None,
Item::UseMod(..) => None,
Item::TypeMapOverride(..) => None,
}
}
/// Returns the target that this was defined in, if it was defined somewhere
/// other than `owning_target()`.
pub fn defining_target(&self) -> Option<&BazelLabel> {
match self {
Item::Record(record) => record.defining_target.as_ref(),
_ => None,
}
}
/// Returns the target that this should generate source code in.
pub fn owning_target(&self) -> Option<&BazelLabel> {
match self {
Item::Func(func) => Some(&func.owning_target),
Item::IncompleteRecord(record) => Some(&record.owning_target),
Item::Record(record) => Some(&record.owning_target),
Item::Enum(e) => Some(&e.owning_target),
Item::TypeAlias(type_alias) => Some(&type_alias.owning_target),
Item::UnsupportedItem(..) => None,
Item::Comment(..) => None,
Item::Namespace(ns) => Some(&ns.owning_target),
Item::UseMod(..) => None,
Item::TypeMapOverride(type_override) => Some(&type_override.owning_target),
}
}
/// Returns true if this corresponds to the definition of a new name for a
/// type.
pub fn is_type_definition(&self) -> bool {
match self {
Item::Func(_) => false,
Item::IncompleteRecord(_) => true,
Item::Record(_) => true,
Item::Enum(_) => true,
Item::TypeAlias(_) => true,
Item::UnsupportedItem(_) => false,
Item::Comment(_) => false,
Item::Namespace(_) => false,
Item::UseMod(_) => false,
Item::TypeMapOverride(_) => false,
}
}
}
impl From<Func> for Item {
fn from(func: Func) -> Item {
Item::Func(Rc::new(func))
}
}
impl<'a> TryFrom<&'a Item> for &'a Rc<Func> {
type Error = Error;
fn try_from(value: &'a Item) -> Result<Self, Self::Error> {
if let Item::Func(f) = value { Ok(f) } else { bail!("Not a Func: {:#?}", value) }
}
}
impl From<Record> for Item {
fn from(record: Record) -> Item {
Item::Record(Rc::new(record))
}
}
impl<'a> TryFrom<&'a Item> for &'a Rc<Record> {
type Error = Error;
fn try_from(value: &'a Item) -> Result<Self, Self::Error> {
if let Item::Record(r) = value { Ok(r) } else { bail!("Not a Record: {:#?}", value) }
}
}
impl From<UnsupportedItem> for Item {
fn from(unsupported: UnsupportedItem) -> Item {
Item::UnsupportedItem(Rc::new(unsupported))
}
}
impl<'a> TryFrom<&'a Item> for &'a Rc<UnsupportedItem> {
type Error = Error;
fn try_from(value: &'a Item) -> Result<Self, Self::Error> {
if let Item::UnsupportedItem(u) = value {
Ok(u)
} else {
bail!("Not an UnsupportedItem: {:#?}", value)
}
}
}
impl From<Comment> for Item {
fn from(comment: Comment) -> Item {
Item::Comment(Rc::new(comment))
}
}
impl<'a> TryFrom<&'a Item> for &'a Rc<Comment> {
type Error = Error;
fn try_from(value: &'a Item) -> Result<Self, Self::Error> {
if let Item::Comment(c) = value { Ok(c) } else { bail!("Not a Comment: {:#?}", value) }
}
}
impl From<Namespace> for Item {
fn from(ns: Namespace) -> Item {
Item::Namespace(Rc::new(ns))
}
}
impl<'a> TryFrom<&'a Item> for &'a Rc<Namespace> {
type Error = Error;
fn try_from(value: &'a Item) -> Result<Self, Self::Error> {
if let Item::Namespace(c) = value { Ok(c) } else { bail!("Not a Namespace: {:#?}", value) }
}
}
flagset::flags! {
pub enum CrubitFeature : u8 {
Supported,
NonExternCFunctions,
/// Experimental is never *set* without also setting Supported, but we allow it to be
/// *required* without also requiring Supported, so that error messages can be more direct.
Experimental,
}
}
impl CrubitFeature {
/// The name of this feature.
pub fn short_name(&self) -> &'static str {
match self {
Self::Supported => "supported",
Self::NonExternCFunctions => "non_extern_c_functions",
Self::Experimental => "experimental",
}
}
/// The aspect hint required to enable this feature.
pub fn aspect_hint(&self) -> &'static str {
match self {
Self::Supported => "//features:supported",
Self::NonExternCFunctions => "//features:non_extern_c_functions",
Self::Experimental => "//features:experimental",
}
}
}
/// A newtype around a flagset of features, so that it can be deserialized from
/// an array of strings instead of an integer.
#[derive(Debug, Default, PartialEq, Eq, Clone)]
struct CrubitFeaturesIR(pub(crate) flagset::FlagSet<CrubitFeature>);
impl<'de> serde::Deserialize<'de> for CrubitFeaturesIR {
fn deserialize<D>(deserializer: D) -> Result<CrubitFeaturesIR, D::Error>
where
D: serde::Deserializer<'de>,
{
let mut features = flagset::FlagSet::<CrubitFeature>::default();
for feature in <Vec<String> as serde::Deserialize<'de>>::deserialize(deserializer)? {
features |= match &*feature {
"supported" => CrubitFeature::Supported,
"non_extern_c_functions" => CrubitFeature::NonExternCFunctions,
"experimental" => CrubitFeature::Experimental,
other => {
return Err(<D::Error as serde::de::Error>::custom(format!(
"Unexpected Crubit feature: {other}"
)));
}
};
}
Ok(CrubitFeaturesIR(features))
}
}
#[derive(PartialEq, Eq, Clone, Deserialize)]
#[serde(deny_unknown_fields, rename(deserialize = "IR"))]
struct FlatIR {
#[serde(default)]
public_headers: Vec<HeaderName>,
current_target: BazelLabel,
#[serde(default)]
items: Vec<Item>,
#[serde(default)]
top_level_item_ids: Vec<ItemId>,
#[serde(default)]
crate_root_path: Option<Rc<str>>,
#[serde(default)]
crubit_features: HashMap<BazelLabel, CrubitFeaturesIR>,
}
/// A custom debug impl that wraps the HashMap in rustfmt-friendly notation.
///
/// See b/272530008.
impl Debug for FlatIR {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
struct DebugHashMap<T: Debug>(pub T);
impl<T: Debug> Debug for DebugHashMap<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// prefix the hash map with `hash_map!` so that the output can be fed to
// rustfmt. The end result is something like `hash_map!{k:v,
// k2:v2}`, which reads well.
write!(f, "hash_map!")?;
Debug::fmt(&self.0, f)
}
}
// exhaustive-match so we don't forget to add fields to Debug when we add to
// FlatIR.
let FlatIR {
public_headers,
current_target,
items,
top_level_item_ids,
crate_root_path,
crubit_features,
} = self;
f.debug_struct("FlatIR")
.field("public_headers", public_headers)
.field("current_target", current_target)
.field("items", items)
.field("top_level_item_ids", top_level_item_ids)
.field("crate_root_path", crate_root_path)
.field("crubit_features", &DebugHashMap(crubit_features))
.finish()
}
}
/// Struct providing the necessary information about the API of a C++ target to
/// enable generation of Rust bindings source code (both `rs_api.rs` and
/// `rs_api_impl.cc` files).
#[derive(PartialEq, Debug)]
pub struct IR {
flat_ir: FlatIR,
// A map from a `decl_id` to an index of an `Item` in the `flat_ir.items` vec.
item_id_to_item_idx: HashMap<ItemId, usize>,
lifetimes: HashMap<LifetimeId, LifetimeName>,
namespace_id_to_number_of_reopened_namespaces: HashMap<ItemId, usize>,
reopened_namespace_id_to_idx: HashMap<ItemId, usize>,
function_name_to_functions: HashMap<UnqualifiedIdentifier, Vec<Rc<Func>>>,
}
impl IR {
pub fn items(&self) -> impl Iterator<Item = &Item> {
self.flat_ir.items.iter()
}
pub fn top_level_item_ids(&self) -> impl Iterator<Item = &ItemId> {
self.flat_ir.top_level_item_ids.iter()
}
pub fn items_mut(&mut self) -> impl Iterator<Item = &mut Item> {
self.flat_ir.items.iter_mut()
}
pub fn public_headers(&self) -> impl Iterator<Item = &HeaderName> {
self.flat_ir.public_headers.iter()
}
pub fn functions(&self) -> impl Iterator<Item = &Rc<Func>> {
self.items().filter_map(|item| match item {
Item::Func(func) => Some(func),
_ => None,
})
}
pub fn records(&self) -> impl Iterator<Item = &Rc<Record>> {
self.items().filter_map(|item| match item {
Item::Record(func) => Some(func),
_ => None,
})
}
pub fn unsupported_items(&self) -> impl Iterator<Item = &Rc<UnsupportedItem>> {
self.items().filter_map(|item| match item {
Item::UnsupportedItem(unsupported_item) => Some(unsupported_item),
_ => None,
})
}
pub fn comments(&self) -> impl Iterator<Item = &Rc<Comment>> {
self.items().filter_map(|item| match item {
Item::Comment(comment) => Some(comment),
_ => None,
})
}
pub fn namespaces(&self) -> impl Iterator<Item = &Rc<Namespace>> {
self.items().filter_map(|item| match item {
Item::Namespace(ns) => Some(ns),
_ => None,
})
}
pub fn item_for_type<T>(&self, ty: &T) -> Result<&Item>
where
T: TypeWithDeclId + Debug,
{
if let Some(decl_id) = ty.decl_id() {
Ok(self.find_untyped_decl(decl_id))
} else {
bail!("Type {:?} does not have an associated item.", ty)
}
}
pub fn find_decl<'a, T>(&'a self, decl_id: ItemId) -> Result<&'a T>
where
&'a T: TryFrom<&'a Item>,
{
self.find_untyped_decl(decl_id).try_into().map_err(|_| {
anyhow!("DeclId {:?} doesn't refer to a {}", decl_id, std::any::type_name::<T>())
})
}
pub fn find_untyped_decl(&self, decl_id: ItemId) -> &Item {
let idx = *self
.item_id_to_item_idx
.get(&decl_id)
.unwrap_or_else(|| panic!("Couldn't find decl_id {:?} in the IR.", decl_id));
self.flat_ir
.items
.get(idx)
.unwrap_or_else(|| panic!("Couldn't find an item at idx {}", idx))
}
/// Returns whether `target` is the current target.
pub fn is_current_target(&self, target: &BazelLabel) -> bool {
// TODO(hlopko): Make this be a pointer comparison, now it's comparing string
// values.
*target == *self.current_target()
}
/// Returns the Crubit features enabled for the given `target`.
#[must_use]
pub fn target_crubit_features(&self, target: &BazelLabel) -> flagset::FlagSet<CrubitFeature> {
self.flat_ir.crubit_features.get(target).cloned().unwrap_or_default().0
}
/// Returns a mutable reference to the Crubit features enabled for the given
/// `target`.
///
/// Since IR is generally only held immutably, this is only useful for
/// testing.
#[must_use]
pub fn target_crubit_features_mut(
&mut self,
target: &BazelLabel,
) -> &mut flagset::FlagSet<CrubitFeature> {
// TODO(jeanpierreda): migrate to raw_entry_mut when stable.
// (target is taken by reference exactly because ideally this function would use
// the raw entry API.)
&mut self.flat_ir.crubit_features.entry(target.clone()).or_default().0
}
pub fn current_target(&self) -> &BazelLabel {
&self.flat_ir.current_target
}
// Returns the standard Debug print string for the `flat_ir`. The reason why we
// don't use the debug print of `Self` is that `Self` contains HashMaps, and
// their debug print produces content that is not valid Rust code.
// `token_stream_matchers` (hacky) implementation parses the debug print and
// chokes on HashMaps. Therefore this method.
//
// Used for `token_stream_matchers`, do not use for anything else.
pub fn flat_ir_debug_print(&self) -> String {
format!("{:?}", self.flat_ir)
}
pub fn get_lifetime(&self, lifetime_id: LifetimeId) -> Option<&LifetimeName> {
self.lifetimes.get(&lifetime_id)
}
pub fn get_reopened_namespace_idx(&self, id: ItemId) -> Result<usize> {
Ok(*self.reopened_namespace_id_to_idx.get(&id).with_context(|| {
format!("Could not find the reopened namespace index for namespace {:?}.", id)
})?)
}
pub fn is_last_reopened_namespace(&self, id: ItemId, canonical_id: ItemId) -> Result<bool> {
let idx = self.get_reopened_namespace_idx(id)?;
let last_item_idx = self
.namespace_id_to_number_of_reopened_namespaces
.get(&canonical_id)
.with_context(|| {
format!(
"Could not find number of reopened namespaces for namespace {:?}.",
canonical_id
)
})? - 1;
Ok(idx == last_item_idx)
}
/// Returns the `Item` defining `func`, or `None` if `func` is not a
/// member function.
///
/// Note that even if `func` is a member function, the associated record
/// might not be a Record IR Item (e.g. it has its type changed via
/// crubit_internal_rust_type).
pub fn record_for_member_func(&self, func: &Func) -> Option<&Item> {
if let Some(meta) = func.member_func_metadata.as_ref() {
Some(self.find_untyped_decl(meta.record_id))
} else {
None
}
}
pub fn crate_root_path(&self) -> Option<Rc<str>> {
self.flat_ir.crate_root_path.clone()
}
pub fn get_functions_by_name(
&self,
function_name: &UnqualifiedIdentifier,
) -> impl Iterator<Item = &Rc<Func>> {
self.function_name_to_functions.get(function_name).map_or([].iter(), |v| v.iter())
}
pub fn namespace_qualifier(&self, item: &impl GenericItem) -> Result<NamespaceQualifier> {
let mut namespaces = vec![];
let item: &Item = self.find_decl(item.id())?;
let mut enclosing_item_id = item.enclosing_item_id();
while let Some(parent_id) = enclosing_item_id {
match self.find_decl(parent_id)? {
Item::Namespace(ns) => {
namespaces.push(ns.name.identifier.clone());
enclosing_item_id = ns.enclosing_item_id;
}
// TODO(b/200067824): This can lead to bugs, if this is used without checking for a
// parent struct. This function will likely need to be expanded to navigate into
// records, as part of b/200067824.
Item::Record { .. } => {
ensure!(namespaces.is_empty(), "Found namespaces inside of a record");
break;
}
_ => {
bail!("Expected namespace");
}
}
}
Ok(NamespaceQualifier::new(namespaces.into_iter().rev()))
}
}
// TODO(jeanpierreda): This should probably be a method on IR accepting a GenericItem,
// and returning the crate name, or similar.
/// Returns Some(crate_ident) if this is an imported crate.
pub fn rs_imported_crate_name(owning_target: &BazelLabel, ir: &IR) -> Option<Ident> {
if ir.is_current_target(owning_target) {
None
} else {
let owning_crate = make_rs_ident(&owning_target.target_name_escaped());
Some(owning_crate)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_identifier_debug_print() {
assert_eq!(format!("{:?}", Identifier { identifier: "hello".into() }), "\"hello\"");
}
#[test]
fn test_unqualified_identifier_debug_print() {
assert_eq!(
format!(
"{:?}",
UnqualifiedIdentifier::Identifier(Identifier { identifier: "hello".into() })
),
"\"hello\""
);
assert_eq!(format!("{:?}", UnqualifiedIdentifier::Constructor), "Constructor");
assert_eq!(format!("{:?}", UnqualifiedIdentifier::Destructor), "Destructor");
}
#[test]
fn test_used_headers() {
let input = r#"
{
"public_headers": [{ "name": "foo/bar.h" }],
"current_target": "//foo:bar"
}
"#;
let ir = deserialize_ir(input.as_bytes()).unwrap();
let expected = FlatIR {
public_headers: vec![HeaderName { name: "foo/bar.h".into() }],
current_target: "//foo:bar".into(),
top_level_item_ids: vec![],
items: vec![],
crate_root_path: None,
crubit_features: Default::default(),
};
assert_eq!(ir.flat_ir, expected);
}
#[test]
fn test_empty_crate_root_path() {
let input = "{ \"current_target\": \"//foo:bar\" }";
let ir = deserialize_ir(input.as_bytes()).unwrap();
assert_eq!(ir.crate_root_path(), None);
}
#[test]
fn test_crate_root_path() {
let input = r#"
{
"crate_root_path": "__cc_template_instantiations_rs_api",
"current_target": "//foo:bar"
}
"#;
let ir = deserialize_ir(input.as_bytes()).unwrap();
assert_eq!(ir.crate_root_path().as_deref(), Some("__cc_template_instantiations_rs_api"));
}
#[test]
fn test_bazel_label_target() {
let label: BazelLabel = "//foo:bar".into();
assert_eq!(label.target_name(), "bar");
}
#[test]
fn test_bazel_label_target_dotless() {
let label: BazelLabel = "//foo".into();
assert_eq!(label.target_name(), "foo");
}
#[test]
fn test_bazel_label_dotless_slashless() {
let label: BazelLabel = "foo".into();
assert_eq!(label.target_name(), "foo");
}
/// These are not labels, but there is an unambiguous interpretation of
/// what their target should be that lets us keep going.
#[test]
fn test_bazel_label_empty_target() {
for s in ["foo:", "foo/", ""] {
let label: BazelLabel = s.into();
assert_eq!(label.target_name(), "", "label={s:?}");
}
}
#[test]
fn test_bazel_label_escape_target_name_with_relative_label() {
let label: BazelLabel = "foo".into();
assert_eq!(label.target_name_escaped(), "foo");
}
#[test]
fn test_bazel_label_escape_target_name_with_invalid_characters() {
let label: BazelLabel = "//:!./%-@^#$&()*-+,;<=>?[]{|}~".into();
assert_eq!(label.target_name_escaped(), "___________________________");
}
#[test]
fn test_bazel_label_escape_target_name_core() {
let label: BazelLabel = "//foo~:core".into();
assert_eq!(label.target_name_escaped(), "core_foo_");
}
#[test]
fn test_bazel_label_escape_target_name_with_no_target_name() {
let label: BazelLabel = "//foo/bar~".into();
assert_eq!(label.target_name_escaped(), "bar_");
}
#[test]
fn test_bazel_label_escape_target_name_with_no_package_name() {
let label: BazelLabel = "//:foo~".into();
assert_eq!(label.target_name_escaped(), "foo_");
}
#[test]
fn test_bazel_label_escape_target_name_core_with_no_package_name_with_no_target_name() {
let label: BazelLabel = "core".into();
assert_eq!(label.target_name_escaped(), "core_");
}
#[test]
fn test_bazel_label_escape_target_name_starting_with_digit() {
let label: BazelLabel = "12345".into();
assert_eq!(label.target_name_escaped(), "n12345");
}
#[test]
fn test_bazel_to_cc_identifier_empty() {
assert_eq!(BazelLabel::from("").convert_to_cc_identifier(), "_");
}
#[test]
fn test_bazel_to_cc_identifier_alphanumeric_not_transformed() {
assert_eq!(BazelLabel::from("abc").convert_to_cc_identifier(), "_abc");
assert_eq!(BazelLabel::from("foo123").convert_to_cc_identifier(), "_foo123");
assert_eq!(BazelLabel::from("123foo").convert_to_cc_identifier(), "_123foo");
}
#[test]
fn test_bazel_to_cc_identifier_simple_targets() {
assert_eq!(
BazelLabel::from("//foo/bar:baz_abc").convert_to_cc_identifier(),
"__2f_2ffoo_2fbar_3abaz_5fabc"
);
}
#[test]
fn test_bazel_to_cc_identifier_conflict() {
assert_ne!(
BazelLabel::from("//foo_bar:baz").convert_to_cc_identifier(),
BazelLabel::from("//foo/bar:baz").convert_to_cc_identifier()
);
}
}