blob: d09b6a41dc2b53f88b89c156ddc4dda0a3e519ea [file] [log] [blame]
// Part of the Crubit project, under the Apache License v2.0 with LLVM
// Exceptions. See /LICENSE for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#include "nullability/pointer_nullability_analysis.h"
#include <optional>
#include <string>
#include <vector>
#include "absl/log/check.h"
#include "nullability/pointer_nullability.h"
#include "nullability/pointer_nullability_lattice.h"
#include "nullability/pointer_nullability_matchers.h"
#include "nullability/type_nullability.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDumper.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Type.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/Analysis/FlowSensitive/CFGMatchSwitch.h"
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Specifiers.h"
namespace clang::tidy::nullability {
using ast_matchers::MatchFinder;
using dataflow::BoolValue;
using dataflow::CFGMatchSwitchBuilder;
using dataflow::Environment;
using dataflow::PointerValue;
using dataflow::TransferState;
using dataflow::Value;
namespace {
TypeNullability prepend(NullabilityKind Head, const TypeNullability &Tail) {
TypeNullability Result = {Head};
Result.insert(Result.end(), Tail.begin(), Tail.end());
return Result;
}
void computeNullability(const Expr *E,
TransferState<PointerNullabilityLattice> &State,
std::function<TypeNullability()> Compute) {
(void)State.Lattice.insertExprNullabilityIfAbsent(E, [&] {
auto Nullability = Compute();
if (unsigned ExpectedSize = countPointersInType(E);
ExpectedSize != Nullability.size()) {
// A nullability vector must have one entry per pointer in the type.
// If this is violated, we probably failed to handle some AST node.
llvm::dbgs()
<< "=== Nullability vector has wrong number of entries: ===\n";
llvm::dbgs() << "Expression: \n";
dump(E, llvm::dbgs());
llvm::dbgs() << "\nNullability (" << Nullability.size()
<< " pointers): " << nullabilityToString(Nullability)
<< "\n";
llvm::dbgs() << "\nType (" << ExpectedSize << " pointers): \n";
dump(exprType(E), llvm::dbgs());
llvm::dbgs() << "=================================\n";
// We can't meaningfully interpret the vector, so discard it.
// TODO: fix all broken cases and upgrade to CHECK or DCHECK or so.
Nullability.assign(ExpectedSize, NullabilityKind::Unspecified);
}
return Nullability;
});
}
// Returns the computed nullability for a subexpr of the current expression.
// This is always available as we compute bottom-up.
const TypeNullability &getNullabilityForChild(
const Expr *E, TransferState<PointerNullabilityLattice> &State) {
return State.Lattice.insertExprNullabilityIfAbsent(E, [&] {
// Since we process child nodes before parents, we should already have
// computed the child nullability. However, this is not true in all test
// cases. So, we return unspecified nullability annotations.
// TODO: fix this issue, and CHECK() instead.
llvm::dbgs() << "=== Missing child nullability: ===\n";
dump(E, llvm::dbgs());
llvm::dbgs() << "==================================\n";
return unspecifiedNullability(E);
});
}
/// Compute the nullability annotation of type `T`, which contains types
/// originally written as a class template type parameter.
///
/// Example:
///
/// \code
/// template <typename F, typename S>
/// struct pair {
/// S *_Nullable getNullablePtrToSecond();
/// };
/// \endcode
///
/// Consider the following member call:
///
/// \code
/// pair<int *, int *_Nonnull> x;
/// x.getNullablePtrToSecond();
/// \endcode
///
/// The class template specialization `x` has the following substitutions:
///
/// F=int *, whose nullability is [_Unspecified]
/// S=int * _Nonnull, whose nullability is [_Nonnull]
///
/// The return type of the member call `x.getNullablePtrToSecond()` is
/// S * _Nullable.
///
/// When we call `substituteNullabilityAnnotationsInClassTemplate` with the type
/// `S * _Nullable` and the `base` node of the member call (in this case, a
/// `DeclRefExpr`), it returns the nullability of the given type after applying
/// substitutions, which in this case is [_Nullable, _Nonnull].
TypeNullability substituteNullabilityAnnotationsInClassTemplate(
QualType T, const TypeNullability &BaseNullabilityAnnotations,
QualType BaseType) {
return getNullabilityAnnotationsFromType(
T,
[&](const SubstTemplateTypeParmType *ST)
-> std::optional<TypeNullability> {
// The class specialization that is BaseType and owns ST.
const ClassTemplateSpecializationDecl *Specialization = nullptr;
if (auto RT = BaseType->getAs<RecordType>())
Specialization =
dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
// TODO: handle nested templates, where associated decl != base type
// (e.g. PointerNullabilityTest.MemberFunctionTemplateOfTemplateStruct)
if (!Specialization || Specialization != ST->getAssociatedDecl())
return std::nullopt;
// TODO: The code below does not deal correctly with partial
// specializations. We should eventually handle these, but for now, just
// bail out.
if (isa<ClassTemplatePartialSpecializationDecl>(
ST->getReplacedParameter()->getDeclContext()))
return std::nullopt;
unsigned ArgIndex = ST->getIndex();
auto TemplateArgs = Specialization->getTemplateArgs().asArray();
// TODO: If the type was substituted from a pack template argument,
// we must find the slice that pertains to this particular type.
// For now, just give up on resugaring this type.
if (ST->getPackIndex().has_value()) return std::nullopt;
unsigned PointerCount =
countPointersInType(Specialization->getDeclContext());
for (auto TA : TemplateArgs.take_front(ArgIndex)) {
PointerCount += countPointersInType(TA);
}
unsigned SliceSize = countPointersInType(TemplateArgs[ArgIndex]);
return ArrayRef(BaseNullabilityAnnotations)
.slice(PointerCount, SliceSize)
.vec();
});
}
/// Compute nullability annotations of `T`, which might contain template type
/// variable substitutions bound by the call `CE`.
///
/// Example:
///
/// \code
/// template<typename F, typename S>
/// std::pair<S, F> flip(std::pair<F, S> p);
/// \endcode
///
/// Consider the following CallExpr:
///
/// \code
/// flip<int * _Nonnull, int * _Nullable>(std::make_pair(&x, &y));
/// \endcode
///
/// This CallExpr has the following substitutions:
/// F=int * _Nonnull, whose nullability is [_Nonnull]
/// S=int * _Nullable, whose nullability is [_Nullable]
///
/// The return type of this CallExpr is `std::pair<S, F>`.
///
/// When we call `substituteNullabilityAnnotationsInFunctionTemplate` with the
/// type `std::pair<S, F>` and the above CallExpr, it returns the nullability
/// the given type after applying substitutions, which in this case is
/// [_Nullable, _Nonnull].
TypeNullability substituteNullabilityAnnotationsInFunctionTemplate(
QualType T, const CallExpr *CE) {
return getNullabilityAnnotationsFromType(
T,
[&](const SubstTemplateTypeParmType *ST)
-> std::optional<TypeNullability> {
auto *DRE = dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreImpCasts());
if (DRE == nullptr) return std::nullopt;
// TODO: Handle calls that use template argument deduction.
// Does this refer to a parameter of the function template?
// If not (e.g. nested templates, template specialization types in the
// return value), we handle the desugaring elsewhere.
auto *ReferencedFunction = dyn_cast<FunctionDecl>(DRE->getDecl());
if (!ReferencedFunction) return std::nullopt;
if (ReferencedFunction->getPrimaryTemplate() != ST->getAssociatedDecl())
return std::nullopt;
// Some or all of the template arguments may be deduced, and we won't
// see those on the `DeclRefExpr`. If the template argument was deduced,
// we don't have any sugar for it.
// TODO(b/268348533): Can we somehow obtain it from the function param
// it was deduced from?
// TODO(b/268345783): This check, as well as the index into
// `template_arguments` below, may be incorrect in the presence of
// parameters packs. In function templates, parameter packs may appear
// anywhere in the parameter list. The index may therefore refer to one
// of the pack arguments, but we might incorrectly interpret it as
// referring to an argument that follows the pack.
if (ST->getIndex() >= DRE->template_arguments().size())
return std::nullopt;
TypeSourceInfo *TSI =
DRE->template_arguments()[ST->getIndex()].getTypeSourceInfo();
if (TSI == nullptr) return std::nullopt;
return getNullabilityAnnotationsFromType(TSI->getType());
});
}
NullabilityKind getPointerNullability(const Expr *E,
PointerNullabilityAnalysis::Lattice &L) {
QualType ExprType = E->getType();
std::optional<NullabilityKind> Nullability = ExprType->getNullability();
// If the expression's type does not contain nullability information, it may
// be a template instantiation. Look up the nullability in the
// `ExprToNullability` map.
if (Nullability.value_or(NullabilityKind::Unspecified) ==
NullabilityKind::Unspecified) {
if (auto MaybeNullability = L.getExprNullability(E)) {
if (!MaybeNullability->empty()) {
// Return the nullability of the topmost pointer in the type.
Nullability = (*MaybeNullability)[0];
}
}
}
return Nullability.value_or(NullabilityKind::Unspecified);
}
void initPointerFromAnnotations(
PointerValue &PointerVal, const Expr *E,
TransferState<PointerNullabilityLattice> &State) {
NullabilityKind Nullability = getPointerNullability(E, State.Lattice);
switch (Nullability) {
case NullabilityKind::NonNull:
initNotNullPointer(PointerVal, State.Env);
break;
case NullabilityKind::Nullable:
initNullablePointer(PointerVal, State.Env);
break;
default:
initUnknownPointer(PointerVal, State.Env);
}
}
void transferFlowSensitiveNullPointer(
const Expr *NullPointer, const MatchFinder::MatchResult &,
TransferState<PointerNullabilityLattice> &State) {
if (auto *PointerVal = getPointerValueFromExpr(NullPointer, State.Env)) {
initNullPointer(*PointerVal, State.Env);
}
}
void transferFlowSensitiveNotNullPointer(
const Expr *NotNullPointer, const MatchFinder::MatchResult &,
TransferState<PointerNullabilityLattice> &State) {
if (auto *PointerVal = getPointerValueFromExpr(NotNullPointer, State.Env)) {
initNotNullPointer(*PointerVal, State.Env);
}
}
const PointerTypeNullability *getOverriddenNullability(
const Expr *E, PointerNullabilityLattice &Lattice) {
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
return Lattice.getDeclNullability(DRE->getDecl());
if (const auto *ME = dyn_cast<MemberExpr>(E))
return Lattice.getDeclNullability(ME->getMemberDecl());
return nullptr;
}
void transferFlowSensitivePointer(
const Expr *PointerExpr, const MatchFinder::MatchResult &Result,
TransferState<PointerNullabilityLattice> &State) {
auto &Env = State.Env;
if (auto *PointerVal = getPointerValueFromExpr(PointerExpr, Env)) {
if (auto *Override = getOverriddenNullability(PointerExpr, State.Lattice)) {
// is_known = (nonnull | nullable)
initPointerNullState(
*PointerVal, Env,
&Env.makeOr(*Override->Nonnull, *Override->Nullable));
// nonnull => !is_null
auto [IsKnown, IsNull] = getPointerNullState(*PointerVal);
Env.addToFlowCondition(
Env.makeImplication(*Override->Nonnull, Env.makeNot(IsNull)));
} else {
initPointerFromAnnotations(*PointerVal, PointerExpr, State);
}
}
}
// TODO(b/233582219): Implement promotion of nullability knownness for initially
// unknown pointers when there is evidence that it is nullable, for example
// when the pointer is compared to nullptr, or casted to boolean.
void transferFlowSensitiveNullCheckComparison(
const BinaryOperator *BinaryOp, const MatchFinder::MatchResult &result,
TransferState<PointerNullabilityLattice> &State) {
// Boolean representing the comparison between the two pointer values,
// automatically created by the dataflow framework.
auto &PointerComparison =
*cast<BoolValue>(State.Env.getValueStrict(*BinaryOp));
CHECK(BinaryOp->getOpcode() == BO_EQ || BinaryOp->getOpcode() == BO_NE);
auto &PointerEQ = BinaryOp->getOpcode() == BO_EQ
? PointerComparison
: State.Env.makeNot(PointerComparison);
auto &PointerNE = BinaryOp->getOpcode() == BO_EQ
? State.Env.makeNot(PointerComparison)
: PointerComparison;
auto *LHS = getPointerValueFromExpr(BinaryOp->getLHS(), State.Env);
auto *RHS = getPointerValueFromExpr(BinaryOp->getRHS(), State.Env);
if (!LHS || !RHS) return;
auto &LHSNull = getPointerNullState(*LHS).second;
auto &RHSNull = getPointerNullState(*RHS).second;
auto &LHSNotNull = State.Env.makeNot(LHSNull);
auto &RHSNotNull = State.Env.makeNot(RHSNull);
// nullptr == nullptr
State.Env.addToFlowCondition(State.Env.makeImplication(
State.Env.makeAnd(LHSNull, RHSNull), PointerEQ));
// nullptr != notnull
State.Env.addToFlowCondition(State.Env.makeImplication(
State.Env.makeAnd(LHSNull, RHSNotNull), PointerNE));
// notnull != nullptr
State.Env.addToFlowCondition(State.Env.makeImplication(
State.Env.makeAnd(LHSNotNull, RHSNull), PointerNE));
}
void transferFlowSensitiveNullCheckImplicitCastPtrToBool(
const Expr *CastExpr, const MatchFinder::MatchResult &,
TransferState<PointerNullabilityLattice> &State) {
auto *PointerVal =
getPointerValueFromExpr(CastExpr->IgnoreImplicit(), State.Env);
if (!PointerVal) return;
auto [PointerKnown, PointerNull] = getPointerNullState(*PointerVal);
State.Env.setValueStrict(*CastExpr, State.Env.makeNot(PointerNull));
}
void transferFlowSensitiveCallExpr(
const CallExpr *CallExpr, const MatchFinder::MatchResult &Result,
TransferState<PointerNullabilityLattice> &State) {
// The dataflow framework itself does not create values for `CallExpr`s.
// However, we need these in some cases, so we produce them ourselves.
dataflow::StorageLocation *Loc = nullptr;
if (CallExpr->isGLValue()) {
// The function returned a reference. Create a storage location for the
// expression so that if code creates a pointer from the reference, we will
// produce a `PointerValue`.
Loc = State.Env.getStorageLocationStrict(*CallExpr);
if (!Loc) {
// This is subtle: We call `createStorageLocation(QualType)`, not
// `createStorageLocation(const Expr &)`, so that we create a new
// storage location every time.
Loc = &State.Env.createStorageLocation(CallExpr->getType());
State.Env.setStorageLocationStrict(*CallExpr, *Loc);
}
}
if (CallExpr->getType()->isAnyPointerType()) {
// Create a pointer so that we can attach nullability to it and have the
// nullability propagate with the pointer.
auto *PointerVal = getPointerValueFromExpr(CallExpr, State.Env);
if (!PointerVal) {
PointerVal =
cast<PointerValue>(State.Env.createValue(CallExpr->getType()));
}
initPointerFromAnnotations(*PointerVal, CallExpr, State);
if (Loc != nullptr)
State.Env.setValue(*Loc, *PointerVal);
else
// `Loc` is set iff `CallExpr` is a glvalue, so we know here that it must
// be a prvalue.
State.Env.setValueStrict(*CallExpr, *PointerVal);
}
}
void transferNonFlowSensitiveDeclRefExpr(
const DeclRefExpr *DRE, const MatchFinder::MatchResult &MR,
TransferState<PointerNullabilityLattice> &State) {
computeNullability(DRE, State, [&] {
return getNullabilityAnnotationsFromType(DRE->getType());
});
}
void transferNonFlowSensitiveMemberExpr(
const MemberExpr *ME, const MatchFinder::MatchResult &MR,
TransferState<PointerNullabilityLattice> &State) {
computeNullability(ME, State, [&]() {
auto BaseNullability = getNullabilityForChild(ME->getBase(), State);
QualType MemberType = ME->getType();
// When a MemberExpr is a part of a member function call
// (a child of CXXMemberCallExpr), the MemberExpr models a
// partially-applied member function, which isn't a real C++ construct.
// The AST does not provide rich type information for such MemberExprs.
// Instead, the AST specifies a placeholder type, specifically
// BuiltinType::BoundMember. So we have to look at the type of the member
// function declaration.
if (ME->hasPlaceholderType(BuiltinType::BoundMember)) {
MemberType = ME->getMemberDecl()->getType();
}
return substituteNullabilityAnnotationsInClassTemplate(
MemberType, BaseNullability, ME->getBase()->getType());
});
}
void transferNonFlowSensitiveMemberCallExpr(
const CXXMemberCallExpr *MCE, const MatchFinder::MatchResult &MR,
TransferState<PointerNullabilityLattice> &State) {
computeNullability(MCE, State, [&]() {
return ArrayRef(getNullabilityForChild(MCE->getCallee(), State))
.take_front(countPointersInType(MCE))
.vec();
});
}
void transferNonFlowSensitiveCastExpr(
const CastExpr *CE, const MatchFinder::MatchResult &MR,
TransferState<PointerNullabilityLattice> &State) {
computeNullability(CE, State, [&]() -> TypeNullability {
// Most casts that can convert ~unrelated types drop nullability in general.
// As a special case, preserve nullability of outer pointer types.
// For example, int* p; (void*)p; is a BitCast, but preserves nullability.
auto PreserveTopLevelPointers = [&](TypeNullability V) {
auto ArgNullability = getNullabilityForChild(CE->getSubExpr(), State);
const PointerType *ArgType = dyn_cast<PointerType>(
CE->getSubExpr()->getType().getCanonicalType().getTypePtr());
const PointerType *CastType =
dyn_cast<PointerType>(CE->getType().getCanonicalType().getTypePtr());
for (int I = 0; ArgType && CastType; ++I) {
V[I] = ArgNullability[I];
ArgType = dyn_cast<PointerType>(ArgType->getPointeeType().getTypePtr());
CastType =
dyn_cast<PointerType>(CastType->getPointeeType().getTypePtr());
}
return V;
};
switch (CE->getCastKind()) {
// Casts between unrelated types: we can't say anything about nullability.
case CK_LValueBitCast:
case CK_BitCast:
case CK_LValueToRValueBitCast:
return PreserveTopLevelPointers(unspecifiedNullability(CE));
// Casts between equivalent types.
case CK_LValueToRValue:
case CK_NoOp:
case CK_AtomicToNonAtomic:
case CK_NonAtomicToAtomic:
case CK_AddressSpaceConversion:
return getNullabilityForChild(CE->getSubExpr(), State);
// Controlled conversions between types
// TODO: these should be doable somehow
case CK_BaseToDerived:
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase:
return PreserveTopLevelPointers(unspecifiedNullability(CE));
case CK_UserDefinedConversion:
case CK_ConstructorConversion:
return unspecifiedNullability(CE);
case CK_Dynamic: {
auto Result = unspecifiedNullability(CE);
// A dynamic_cast to pointer is null if the runtime check fails.
if (isa<PointerType>(CE->getType().getCanonicalType()))
Result.front() = NullabilityKind::Nullable;
return Result;
}
// Primitive values have no nullability.
case CK_ToVoid:
case CK_MemberPointerToBoolean:
case CK_PointerToBoolean:
case CK_PointerToIntegral:
case CK_IntegralCast:
case CK_IntegralToBoolean:
case CK_IntegralToFloating:
case CK_FloatingToFixedPoint:
case CK_FixedPointToFloating:
case CK_FixedPointCast:
case CK_FixedPointToIntegral:
case CK_IntegralToFixedPoint:
case CK_FixedPointToBoolean:
case CK_FloatingToIntegral:
case CK_FloatingToBoolean:
case CK_BooleanToSignedIntegral:
case CK_FloatingCast:
case CK_FloatingRealToComplex:
case CK_FloatingComplexToReal:
case CK_FloatingComplexToBoolean:
case CK_FloatingComplexCast:
case CK_FloatingComplexToIntegralComplex:
case CK_IntegralRealToComplex:
case CK_IntegralComplexToReal:
case CK_IntegralComplexToBoolean:
case CK_IntegralComplexCast:
case CK_IntegralComplexToFloatingComplex:
return {};
// This can definitely be null!
case CK_NullToPointer: {
auto Nullability = getNullabilityAnnotationsFromType(CE->getType());
// Despite the name `NullToPointer`, the destination type of the cast
// may be `nullptr_t` (which is, itself, not a pointer type).
if (!CE->getType()->isNullPtrType())
Nullability.front() = NullabilityKind::Nullable;
return Nullability;
}
// Pointers out of thin air, who knows?
case CK_IntegralToPointer:
return unspecifiedNullability(CE);
// Decayed objects are never null.
case CK_ArrayToPointerDecay:
case CK_FunctionToPointerDecay:
return prepend(NullabilityKind::NonNull,
getNullabilityForChild(CE->getSubExpr(), State));
// Despite its name, the result type of `BuiltinFnToFnPtr` is a function,
// not a function pointer, so nullability doesn't change.
case CK_BuiltinFnToFnPtr:
return getNullabilityForChild(CE->getSubExpr(), State);
// TODO: what is our model of member pointers?
case CK_BaseToDerivedMemberPointer:
case CK_DerivedToBaseMemberPointer:
case CK_NullToMemberPointer:
case CK_ReinterpretMemberPointer:
case CK_ToUnion: // and unions?
return unspecifiedNullability(CE);
// TODO: Non-C/C++ constructs, do we care about these?
case CK_CPointerToObjCPointerCast:
case CK_ObjCObjectLValueCast:
case CK_MatrixCast:
case CK_VectorSplat:
case CK_BlockPointerToObjCPointerCast:
case CK_AnyPointerToBlockPointerCast:
case CK_ARCProduceObject:
case CK_ARCConsumeObject:
case CK_ARCReclaimReturnedObject:
case CK_ARCExtendBlockObject:
case CK_CopyAndAutoreleaseBlockObject:
case CK_ZeroToOCLOpaqueType:
case CK_IntToOCLSampler:
return unspecifiedNullability(CE);
case CK_Dependent:
CHECK(false) << "Shouldn't see dependent casts here?";
}
});
}
void transferNonFlowSensitiveMaterializeTemporaryExpr(
const MaterializeTemporaryExpr *MTE, const MatchFinder::MatchResult &MR,
TransferState<PointerNullabilityLattice> &State) {
computeNullability(MTE, State, [&]() {
return getNullabilityForChild(MTE->getSubExpr(), State);
});
}
void transferNonFlowSensitiveCallExpr(
const CallExpr *CE, const MatchFinder::MatchResult &MR,
TransferState<PointerNullabilityLattice> &State) {
// TODO: Check CallExpr arguments in the diagnoser against the nullability of
// parameters.
computeNullability(CE, State, [&]() {
// TODO(mboehme): Instead of relying on Clang to propagate nullability sugar
// to the `CallExpr`'s type, we should extract nullability directly from the
// callee `Expr .
return substituteNullabilityAnnotationsInFunctionTemplate(CE->getType(),
CE);
});
}
void transferNonFlowSensitiveUnaryOperator(
const UnaryOperator *UO, const MatchFinder::MatchResult &MR,
TransferState<PointerNullabilityLattice> &State) {
computeNullability(UO, State, [&]() -> TypeNullability {
switch (UO->getOpcode()) {
case UO_AddrOf:
return prepend(NullabilityKind::NonNull,
getNullabilityForChild(UO->getSubExpr(), State));
case UO_Deref:
return ArrayRef(getNullabilityForChild(UO->getSubExpr(), State))
.drop_front()
.vec();
case UO_PostInc:
case UO_PostDec:
case UO_PreInc:
case UO_PreDec:
case UO_Plus:
case UO_Minus:
case UO_Not:
case UO_LNot:
case UO_Real:
case UO_Imag:
case UO_Extension:
return getNullabilityForChild(UO->getSubExpr(), State);
case UO_Coawait:
// TODO: work out what to do here!
return unspecifiedNullability(UO);
}
});
}
void transferNonFlowSensitiveNewExpr(
const CXXNewExpr *NE, const MatchFinder::MatchResult &MR,
TransferState<PointerNullabilityLattice> &State) {
computeNullability(NE, State, [&]() {
TypeNullability result = getNullabilityAnnotationsFromType(NE->getType());
result.front() = NE->shouldNullCheckAllocation() ? NullabilityKind::Nullable
: NullabilityKind::NonNull;
return result;
});
}
void transferNonFlowSensitiveArraySubscriptExpr(
const ArraySubscriptExpr *ASE, const MatchFinder::MatchResult &MR,
TransferState<PointerNullabilityLattice> &State) {
computeNullability(ASE, State, [&]() {
auto &BaseNullability = getNullabilityForChild(ASE->getBase(), State);
CHECK(ASE->getBase()->getType()->isAnyPointerType());
return ArrayRef(BaseNullability).slice(1).vec();
});
}
void transferNonFlowSensitiveThisExpr(
const CXXThisExpr *TE, const MatchFinder::MatchResult &MR,
TransferState<PointerNullabilityLattice> &State) {
computeNullability(TE, State, [&]() {
TypeNullability result = getNullabilityAnnotationsFromType(TE->getType());
result.front() = NullabilityKind::NonNull;
return result;
});
}
auto buildNonFlowSensitiveTransferer() {
return CFGMatchSwitchBuilder<TransferState<PointerNullabilityLattice>>()
.CaseOfCFGStmt<DeclRefExpr>(ast_matchers::declRefExpr(),
transferNonFlowSensitiveDeclRefExpr)
.CaseOfCFGStmt<MemberExpr>(ast_matchers::memberExpr(),
transferNonFlowSensitiveMemberExpr)
.CaseOfCFGStmt<CXXMemberCallExpr>(ast_matchers::cxxMemberCallExpr(),
transferNonFlowSensitiveMemberCallExpr)
.CaseOfCFGStmt<CastExpr>(ast_matchers::castExpr(),
transferNonFlowSensitiveCastExpr)
.CaseOfCFGStmt<MaterializeTemporaryExpr>(
ast_matchers::materializeTemporaryExpr(),
transferNonFlowSensitiveMaterializeTemporaryExpr)
.CaseOfCFGStmt<CallExpr>(ast_matchers::callExpr(),
transferNonFlowSensitiveCallExpr)
.CaseOfCFGStmt<UnaryOperator>(ast_matchers::unaryOperator(),
transferNonFlowSensitiveUnaryOperator)
.CaseOfCFGStmt<CXXNewExpr>(ast_matchers::cxxNewExpr(),
transferNonFlowSensitiveNewExpr)
.CaseOfCFGStmt<ArraySubscriptExpr>(
ast_matchers::arraySubscriptExpr(),
transferNonFlowSensitiveArraySubscriptExpr)
.CaseOfCFGStmt<CXXThisExpr>(ast_matchers::cxxThisExpr(),
transferNonFlowSensitiveThisExpr)
.Build();
}
auto buildFlowSensitiveTransferer() {
return CFGMatchSwitchBuilder<TransferState<PointerNullabilityLattice>>()
// Handles initialization of the null states of pointers.
.CaseOfCFGStmt<Expr>(isAddrOf(), transferFlowSensitiveNotNullPointer)
// TODO(mboehme): I believe we should be able to move handling of null
// pointers to the non-flow-sensitive part of the analysis.
.CaseOfCFGStmt<Expr>(isNullPointerLiteral(),
transferFlowSensitiveNullPointer)
.CaseOfCFGStmt<CallExpr>(isCallExpr(), transferFlowSensitiveCallExpr)
.CaseOfCFGStmt<Expr>(isPointerExpr(), transferFlowSensitivePointer)
// Handles comparison between 2 pointers.
.CaseOfCFGStmt<BinaryOperator>(isPointerCheckBinOp(),
transferFlowSensitiveNullCheckComparison)
// Handles checking of pointer as boolean.
.CaseOfCFGStmt<Expr>(isImplicitCastPointerToBool(),
transferFlowSensitiveNullCheckImplicitCastPtrToBool)
.Build();
}
} // namespace
PointerNullabilityAnalysis::PointerNullabilityAnalysis(ASTContext &Context)
: DataflowAnalysis<PointerNullabilityAnalysis, PointerNullabilityLattice>(
Context),
NonFlowSensitiveTransferer(buildNonFlowSensitiveTransferer()),
FlowSensitiveTransferer(buildFlowSensitiveTransferer()) {}
PointerTypeNullability PointerNullabilityAnalysis::assignNullabilityVariable(
const ValueDecl *D, dataflow::Arena &A) {
auto [It, Inserted] = NFS.DeclTopLevelNullability.try_emplace(D);
if (Inserted) {
It->second.Nonnull = &A.makeAtomValue();
It->second.Nullable = &A.makeAtomValue();
}
return It->second;
}
void PointerNullabilityAnalysis::transfer(const CFGElement &Elt,
PointerNullabilityLattice &Lattice,
Environment &Env) {
TransferState<PointerNullabilityLattice> State(Lattice, Env);
NonFlowSensitiveTransferer(Elt, getASTContext(), State);
FlowSensitiveTransferer(Elt, getASTContext(), State);
}
BoolValue &mergeBoolValues(BoolValue &Bool1, const Environment &Env1,
BoolValue &Bool2, const Environment &Env2,
Environment &MergedEnv) {
if (&Bool1 == &Bool2) {
return Bool1;
}
auto &A = MergedEnv.arena();
auto &MergedBool = A.makeAtomRef(A.makeAtom());
// If `Bool1` and `Bool2` is constrained to the same true / false value,
// `MergedBool` can be constrained similarly without needing to consider the
// path taken - this simplifies the flow condition tracked in `MergedEnv`.
// Otherwise, information about which path was taken is used to associate
// `MergedBool` with `Bool1` and `Bool2`.
if (Env1.flowConditionImplies(Bool1) && Env2.flowConditionImplies(Bool2)) {
MergedEnv.addToFlowCondition(MergedBool);
} else if (Env1.flowConditionImplies(Env1.makeNot(Bool1)) &&
Env2.flowConditionImplies(Env2.makeNot(Bool2))) {
MergedEnv.addToFlowCondition(A.makeNot(MergedBool));
} else {
// TODO(b/233582219): Flow conditions are not necessarily mutually
// exclusive, a fix is in order: https://reviews.llvm.org/D130270. Update
// this section when the patch is commited.
auto FC1 = Env1.getFlowConditionToken();
auto FC2 = Env2.getFlowConditionToken();
MergedEnv.addToFlowCondition(
A.makeOr(A.makeAnd(A.makeAtomRef(FC1),
A.makeEquals(MergedBool, Bool1.formula())),
A.makeAnd(A.makeAtomRef(FC2),
A.makeEquals(MergedBool, Bool2.formula()))));
}
return A.makeBoolValue(MergedBool);
}
bool PointerNullabilityAnalysis::merge(QualType Type, const Value &Val1,
const Environment &Env1,
const Value &Val2,
const Environment &Env2,
Value &MergedVal,
Environment &MergedEnv) {
if (!Type->isAnyPointerType()) {
return false;
}
if (!hasPointerNullState(cast<PointerValue>(Val1)) ||
!hasPointerNullState(cast<PointerValue>(Val2))) {
return false;
}
auto [Known1, Null1] = getPointerNullState(cast<PointerValue>(Val1));
auto [Known2, Null2] = getPointerNullState(cast<PointerValue>(Val2));
auto &Known = mergeBoolValues(Known1, Env1, Known2, Env2, MergedEnv);
auto &Null = mergeBoolValues(Null1, Env1, Null2, Env2, MergedEnv);
initPointerNullState(cast<PointerValue>(MergedVal), MergedEnv, &Known, &Null);
return true;
}
} // namespace clang::tidy::nullability