| // Copyright 2016 The Bazel Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| package com.google.testing.coverage; |
| |
| import static java.util.Comparator.comparing; |
| |
| import java.util.ArrayList; |
| import java.util.HashMap; |
| import java.util.HashSet; |
| import java.util.List; |
| import java.util.Map; |
| import java.util.Set; |
| import java.util.TreeMap; |
| import org.jacoco.core.internal.analysis.Instruction; |
| import org.jacoco.core.internal.analysis.filter.IFilter; |
| import org.jacoco.core.internal.analysis.filter.IFilterContext; |
| import org.jacoco.core.internal.analysis.filter.IFilterOutput; |
| import org.jacoco.core.internal.flow.IFrame; |
| import org.jacoco.core.internal.flow.LabelInfo; |
| import org.jacoco.core.internal.flow.MethodProbesVisitor; |
| import org.objectweb.asm.Handle; |
| import org.objectweb.asm.Label; |
| import org.objectweb.asm.MethodVisitor; |
| import org.objectweb.asm.tree.AbstractInsnNode; |
| import org.objectweb.asm.tree.MethodNode; |
| |
| /** |
| * The mapper is a probes visitor that will cache control flow information as well as keeping track |
| * of the probes as the main driver generates the probe ids. Upon finishing the method it uses the |
| * information collected to generate the mapping information between probes and the instructions. |
| */ |
| public class MethodProbesMapper extends MethodProbesVisitor implements IFilterOutput { |
| /* |
| * The implementation roughly follows the same pattern of the Analyzer class of Jacoco. |
| * |
| * The mapper has a few states: |
| * |
| * - lineMappings: a mapping between line number and labels |
| * |
| * - a sequence of "instructions", where each instruction has one or more predecessors. The |
| * predecessor field has a sole purpose of propagating probe id. The 'merge' nodes in the CFG has |
| * no predecessors, since the branch stops at theses points. |
| * |
| * - The instructions each has states that keep track of the probes that are associated with the |
| * instruction. |
| * |
| * Initially the probe ids are assigned to the instructions that immediately precede the probe. At |
| * the end of visiting the methods, the probe ids are propagated through the predecessor chains. |
| */ |
| |
| // States |
| // |
| // These are state variables that needs to be updated in the visitor methods. |
| // The values usually changes as we traverse the byte code. |
| private Instruction lastInstruction = null; |
| private int currentLine = -1; |
| private List<Label> currentLabels = new ArrayList<>(); |
| private AbstractInsnNode currentInstructionNode = null; |
| private Map<AbstractInsnNode, Instruction> instructionMap = new HashMap<>(); |
| private int instructionNodeIndex = 0; |
| private Map<AbstractInsnNode, Integer> instructionNodeIndexMap = new HashMap<>(); |
| |
| // Filtering |
| private IFilter filter; |
| private IFilterContext filterContext; |
| private HashSet<AbstractInsnNode> ignored = new HashSet<>(); |
| private Map<AbstractInsnNode, AbstractInsnNode> unioned = new HashMap<>(); |
| private Map<AbstractInsnNode, Set<AbstractInsnNode>> branchReplacements = new HashMap<>(); |
| |
| // Result |
| private Map<Integer, BranchExp> lineToBranchExp = new TreeMap(); |
| public Map<Integer, BranchExp> result() { |
| return lineToBranchExp; |
| } |
| |
| // Intermediate results |
| // |
| // These values are built up during the visitor methods. They will be used to compute |
| // the final results. |
| private List<Instruction> instructions = new ArrayList<Instruction>(); |
| private List<Jump> jumps = new ArrayList<>(); |
| private Map<Integer, Instruction> probeToInsn = new TreeMap<>(); |
| |
| // A map which associates intructions with their coverage expressions. |
| private final Map<Instruction, CovExp> insnToCovExp = new HashMap(); |
| |
| // A map which associates a instruction to the branch index in its predecessor |
| // e.g., the instruction that follows a conditional jump instruction must exists in |
| // this map. |
| private final Map<Instruction, Integer> insnToIdx = new HashMap(); |
| |
| // Local cache |
| // |
| // These are maps corresponding to data structures available in JaCoCo in other form. |
| // We use local data structure to avoid need to change the JaCoCo internal code. |
| private Map<Instruction, Instruction> predecessors = new HashMap<>(); |
| private Map<Label, Instruction> labelToInsn = new HashMap<>(); |
| |
| public MethodProbesMapper(IFilterContext filterContext, IFilter filter) { |
| this.filterContext = filterContext; |
| this.filter = filter; |
| } |
| |
| @Override |
| public void accept(MethodNode methodNode, MethodVisitor methodVisitor) { |
| methodVisitor.visitCode(); |
| for (AbstractInsnNode i : methodNode.instructions) { |
| currentInstructionNode = i; |
| i.accept(methodVisitor); |
| } |
| filter.filter(methodNode, filterContext, this); |
| methodVisitor.visitEnd(); |
| } |
| |
| /** Visitor method to append a new Instruction */ |
| private void visitInsn() { |
| Instruction instruction = new Instruction(currentLine); |
| instructions.add(instruction); |
| if (lastInstruction != null) { |
| lastInstruction.addBranch(instruction, 0); // the first branch from last instruction |
| predecessors.put(instruction, lastInstruction); // Update local cache |
| } |
| |
| for (Label label : currentLabels) { |
| labelToInsn.put(label, instruction); |
| } |
| currentLabels.clear(); // Update states |
| lastInstruction = instruction; |
| instructionMap.put(currentInstructionNode, instruction); |
| instructionNodeIndexMap.put(currentInstructionNode, instructionNodeIndex); |
| instructionNodeIndex++; |
| } |
| |
| // Plain visitors: called from adapter when no probe is needed |
| @Override |
| public void visitInsn(int opcode) { |
| visitInsn(); |
| } |
| |
| @Override |
| public void visitIntInsn(int opcode, int operand) { |
| visitInsn(); |
| } |
| |
| @Override |
| public void visitVarInsn(int opcode, int variable) { |
| visitInsn(); |
| } |
| |
| @Override |
| public void visitTypeInsn(int opcode, String type) { |
| visitInsn(); |
| } |
| |
| @Override |
| public void visitFieldInsn(int opcode, String owner, String name, String desc) { |
| visitInsn(); |
| } |
| |
| @Override |
| public void visitMethodInsn(int opcode, String owner, String name, String desc, boolean itf) { |
| visitInsn(); |
| } |
| |
| @Override |
| public void visitInvokeDynamicInsn(String name, String desc, Handle handle, Object... args) { |
| visitInsn(); |
| } |
| |
| @Override |
| public void visitLdcInsn(Object cst) { |
| visitInsn(); |
| } |
| |
| @Override |
| public void visitIincInsn(int var, int inc) { |
| visitInsn(); |
| } |
| |
| @Override |
| public void visitMultiANewArrayInsn(String desc, int dims) { |
| visitInsn(); |
| } |
| |
| |
| // Methods that need to update the states |
| @Override |
| public void visitJumpInsn(int opcode, Label label) { |
| visitInsn(); |
| jumps.add(new Jump(lastInstruction, label, 1)); |
| } |
| |
| @Override |
| public void visitLabel(Label label) { |
| currentLabels.add(label); |
| if (!LabelInfo.isSuccessor(label)) { |
| lastInstruction = null; |
| } |
| } |
| |
| @Override |
| public void visitLineNumber(int line, Label start) { |
| currentLine = line; |
| } |
| |
| /** Visit a switch instruction with no probes */ |
| private void visitSwitchInsn(Label dflt, Label[] labels) { |
| visitInsn(); |
| |
| // Handle default transition |
| LabelInfo.resetDone(dflt); |
| int branch = 0; |
| jumps.add(new Jump(lastInstruction, dflt, branch)); |
| LabelInfo.setDone(dflt); |
| |
| // Handle other transitions |
| LabelInfo.resetDone(labels); |
| for (Label label : labels) { |
| if (!LabelInfo.isDone(label)) { |
| jumps.add(new Jump(lastInstruction, label, branch)); |
| LabelInfo.setDone(label); |
| } |
| } |
| } |
| |
| @Override |
| public void visitTableSwitchInsn(int min, int max, Label dflt, Label... labels) { |
| visitSwitchInsn(dflt, labels); |
| } |
| |
| @Override |
| public void visitLookupSwitchInsn(Label dflt, int[] keys, Label[] labels) { |
| visitSwitchInsn(dflt, labels); |
| } |
| |
| private void addProbe(int probeId) { |
| // We do not add probes to the flow graph, but we need to update |
| // the branch count of the predecessor of the probe |
| lastInstruction.addBranch(false, 0); |
| probeToInsn.put(probeId, lastInstruction); |
| } |
| |
| // Probe visit methods |
| @Override |
| public void visitProbe(int probeId) { |
| // This function is only called when visiting a merge node which |
| // is a successor. |
| // It adds an probe point to the last instruction |
| assert (lastInstruction != null); |
| |
| addProbe(probeId); |
| lastInstruction = null; // Merge point should have no predecessor. |
| } |
| |
| @Override |
| public void visitJumpInsnWithProbe(int opcode, Label label, int probeId, IFrame frame) { |
| visitInsn(); |
| addProbe(probeId); |
| } |
| |
| @Override |
| public void visitInsnWithProbe(int opcode, int probeId) { |
| visitInsn(); |
| addProbe(probeId); |
| } |
| |
| @Override |
| public void visitTableSwitchInsnWithProbes( |
| int min, int max, Label dflt, Label[] labels, IFrame frame) { |
| visitSwitchInsnWithProbes(dflt, labels); |
| } |
| |
| @Override |
| public void visitLookupSwitchInsnWithProbes( |
| Label dflt, int[] keys, Label[] labels, IFrame frame) { |
| visitSwitchInsnWithProbes(dflt, labels); |
| } |
| |
| private void visitSwitchInsnWithProbes(Label dflt, Label[] labels) { |
| visitInsn(); |
| LabelInfo.resetDone(dflt); |
| LabelInfo.resetDone(labels); |
| int branch = 0; |
| visitTargetWithProbe(dflt, branch); |
| for (Label l : labels) { |
| visitTargetWithProbe(l, branch); |
| } |
| } |
| |
| private void visitTargetWithProbe(Label label, int branch) { |
| if (!LabelInfo.isDone(label)) { |
| int id = LabelInfo.getProbeId(label); |
| if (id == LabelInfo.NO_PROBE) { |
| jumps.add(new Jump(lastInstruction, label, branch)); |
| } else { |
| // Note, in this case the instrumenter should insert intermediate labels |
| // for the probes. These probes will be added for the switch instruction. |
| // |
| // There is no direct jump between lastInstruction and the label either. |
| addProbe(id); |
| } |
| LabelInfo.setDone(label); |
| } |
| } |
| |
| // If a CovExp of pred is ProbeExp, create a single-branch BranchExp and put it in the map. |
| // Also update the index of insn. |
| private BranchExp getPredBranchExp(Instruction predecessor) { |
| BranchExp result = null; |
| CovExp exp = insnToCovExp.get(predecessor); |
| if (exp instanceof ProbeExp) { |
| result = new BranchExp(exp); // Change ProbeExp to BranchExp |
| insnToCovExp.put(predecessor, result); |
| // This can only happen if the internal data of Jacoco is inconsistent: |
| // the instruction is the predecessor of more than one instructions, |
| // but its branch count is not > 1. |
| } else { |
| result = (BranchExp) exp; |
| } |
| return result; |
| } |
| |
| // Update a branch predecessor and returns whether the BranchExp of the predecessor is new. |
| private boolean updateBranchPredecessor(Instruction predecessor, Instruction insn, CovExp exp) { |
| CovExp predExp = insnToCovExp.get(predecessor); |
| if (predExp == null) { |
| BranchExp branchExp = new BranchExp(exp); |
| insnToCovExp.put(predecessor, branchExp); |
| insnToIdx.put(insn, 0); // current insn is the first branch |
| return true; |
| } |
| |
| BranchExp branchExp = getPredBranchExp(predecessor); |
| Integer branchIdx = insnToIdx.get(insn); |
| if (branchIdx == null) { |
| // Keep track of the instructions in the branches that are already added |
| branchIdx = branchExp.add(exp); |
| insnToIdx.put(insn, branchIdx); |
| } |
| // If the branch where the instruction is on is already added, no need to do anything as |
| // branchExp has a reference to exp already. |
| return false; |
| } |
| |
| /** Finishing the method */ |
| @Override |
| public void visitEnd() { |
| for (Jump jump : jumps) { |
| Instruction insn = labelToInsn.get(jump.target); |
| jump.source.addBranch(insn, jump.branch); |
| predecessors.put(insn, jump.source); |
| } |
| |
| // Compute CovExp for every instruction. |
| for (Map.Entry<Integer, Instruction> entry : probeToInsn.entrySet()) { |
| int probeId = entry.getKey(); |
| Instruction ins = entry.getValue(); |
| |
| Instruction insn = ins; |
| CovExp exp = new ProbeExp(probeId); |
| |
| // Compute CovExp for the probed instruction. |
| CovExp existingExp = insnToCovExp.get(insn); |
| if (existingExp != null) { |
| // The instruction already has a branch, add the probeExp as |
| // a new branch. |
| if (existingExp instanceof BranchExp) { |
| BranchExp branchExp = (BranchExp) existingExp; |
| branchExp.add(exp); |
| } else { |
| // This can only happen if the internal data is inconsistent. |
| // The instruction is a predecessor of another instruction and also |
| // has a probe, but the branch count is not > 1. |
| } |
| } else { |
| if (insn.getBranchCounter().getTotalCount() > 1) { |
| exp = new BranchExp(exp); |
| } |
| insnToCovExp.put(insn, exp); |
| } |
| |
| Instruction predecessor = predecessors.get(insn); |
| while (predecessor != null) { |
| if (predecessor.getBranchCounter().getTotalCount() > 1) { |
| boolean isNewBranch = updateBranchPredecessor(predecessor, insn, exp); |
| if (!isNewBranch) { |
| // If the branch already exists, no need to visit predecessors any more. |
| break; |
| } |
| } else { |
| // No branch at predecessor, use the same CovExp |
| insnToCovExp.put(predecessor, exp); |
| } |
| insn = predecessor; |
| exp = insnToCovExp.get(predecessor); |
| predecessor = predecessors.get(insn); |
| } |
| } |
| |
| // Handle merged instructions |
| for (AbstractInsnNode node : unioned.keySet()) { |
| AbstractInsnNode rep = findRepresentative(node); |
| Instruction insn = instructionMap.get(node); |
| Instruction repInsn = instructionMap.get(rep); |
| BranchExp branch = BranchExp.ensureIsBranchExp(insnToCovExp.get(insn)); |
| BranchExp repBranch = BranchExp.ensureIsBranchExp(insnToCovExp.get(repInsn)); |
| insnToCovExp.put(repInsn, BranchExp.zip(repBranch, branch)); |
| ignored.add(node); |
| } |
| |
| // Handle branch replacements |
| for (Map.Entry<AbstractInsnNode, Set<AbstractInsnNode>> entry : branchReplacements.entrySet()) { |
| // The replacement set is not ordered deterministically and we require it to be so to be able |
| // to merge multiple coverage reports later on. We use the order in which we encountered |
| // nodes to determine the order of branches for the new BranchExp |
| ArrayList<AbstractInsnNode> replacements = new ArrayList<>(entry.getValue()); |
| replacements.sort(comparing(instructionNodeIndexMap::get)); |
| BranchExp newBranch = new BranchExp(new ArrayList<>()); |
| // Merging of coverage reports down the line only makes sense now if replacements is iterated |
| // in a deterministic order, which is a false assumption. |
| for (AbstractInsnNode node : replacements) { |
| newBranch.add(insnToCovExp.get(instructionMap.get(node))); |
| } |
| insnToCovExp.put(instructionMap.get(entry.getKey()), newBranch); |
| } |
| |
| HashSet<Instruction> ignoredInstructions = new HashSet<>(); |
| for (Map.Entry<AbstractInsnNode, Instruction> entry : instructionMap.entrySet()) { |
| if (ignored.contains(entry.getKey())) { |
| ignoredInstructions.add(entry.getValue()); |
| } |
| } |
| |
| // Merge branches in the instructions on the same line |
| for (Instruction insn : instructions) { |
| if (ignoredInstructions.contains(insn)) { |
| continue; |
| } |
| if (insn.getBranchCounter().getTotalCount() > 1) { |
| CovExp insnExp = insnToCovExp.get(insn); |
| if (insnExp != null && (insnExp instanceof BranchExp)) { |
| BranchExp exp = (BranchExp) insnExp; |
| BranchExp lineExp = lineToBranchExp.get(insn.getLine()); |
| if (lineExp == null) { |
| lineToBranchExp.put(insn.getLine(), exp); |
| } else { |
| lineToBranchExp.put(insn.getLine(), BranchExp.concatenate(lineExp, exp)); |
| } |
| } else { |
| // If we reach here, the internal data of the mapping is inconsistent, either |
| // 1) An instruction has branches but we do not create BranchExp for it. |
| // 2) An instruction has branches but it does not have an associated CovExp. |
| } |
| } |
| } |
| } |
| |
| /** IFilterOutput */ |
| // Handle only ignore for now; most filters only use this. |
| @Override |
| public void ignore(AbstractInsnNode fromInclusive, AbstractInsnNode toInclusive) { |
| for (AbstractInsnNode n = fromInclusive; n != toInclusive; n = n.getNext()) { |
| ignored.add(n); |
| } |
| ignored.add(toInclusive); |
| } |
| |
| @Override |
| public void merge(AbstractInsnNode i1, AbstractInsnNode i2) { |
| // Track nodes to be merged using a union-find algorithm. |
| i1 = findRepresentative(i1); |
| i2 = findRepresentative(i2); |
| if (i1 != i2) { |
| unioned.put(i1, i2); |
| } |
| } |
| |
| @Override |
| public void replaceBranches(AbstractInsnNode source, Set<AbstractInsnNode> newTargets) { |
| branchReplacements.put(source, newTargets); |
| } |
| |
| private AbstractInsnNode findRepresentative(AbstractInsnNode node) { |
| // The "find" part of union-find. Walk the chain of nodes to find the representative node |
| // (at the root), flattening the tree a little as we go. |
| AbstractInsnNode parent; |
| AbstractInsnNode grandParent; |
| while ((parent = unioned.get(node)) != null) { |
| if ((grandParent = unioned.get(parent)) != null) { |
| unioned.put(node, grandParent); |
| } |
| node = parent; |
| } |
| return node; |
| } |
| |
| /** Jumps between instructions and labels */ |
| class Jump { |
| public final Instruction source; |
| public final Label target; |
| public final int branch; |
| |
| public Jump(Instruction i, Label l, int b) { |
| source = i; |
| target = l; |
| branch = b; |
| } |
| } |
| } |