blob: 8c2336af1b53eb3f1343992078517f226223f0a2 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#include <google/protobuf/compiler/cpp/cpp_message.h>
#include <algorithm>
#include <google/protobuf/stubs/hash.h>
#include <map>
#include <memory>
#include <utility>
#include <vector>
#include <google/protobuf/compiler/cpp/cpp_enum.h>
#include <google/protobuf/compiler/cpp/cpp_extension.h>
#include <google/protobuf/compiler/cpp/cpp_field.h>
#include <google/protobuf/compiler/cpp/cpp_helpers.h>
#include <google/protobuf/compiler/cpp/cpp_padding_optimizer.h>
#include <google/protobuf/descriptor.pb.h>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/printer.h>
#include <google/protobuf/generated_message_table_driven.h>
#include <google/protobuf/generated_message_util.h>
#include <google/protobuf/map_entry_lite.h>
#include <google/protobuf/wire_format.h>
#include <google/protobuf/stubs/strutil.h>
#include <google/protobuf/stubs/substitute.h>
namespace google {
namespace protobuf {
namespace compiler {
namespace cpp {
using internal::WireFormat;
using internal::WireFormatLite;
namespace {
template <class T>
void PrintFieldComment(io::Printer* printer, const T* field) {
// Print the field's (or oneof's) proto-syntax definition as a comment.
// We don't want to print group bodies so we cut off after the first
// line.
DebugStringOptions options;
options.elide_group_body = true;
options.elide_oneof_body = true;
string def = field->DebugStringWithOptions(options);
printer->Print("// $def$\n",
"def", def.substr(0, def.find_first_of('\n')));
}
struct FieldOrderingByNumber {
inline bool operator()(const FieldDescriptor* a,
const FieldDescriptor* b) const {
return a->number() < b->number();
}
};
// Sort the fields of the given Descriptor by number into a new[]'d array
// and return it.
std::vector<const FieldDescriptor*> SortFieldsByNumber(
const Descriptor* descriptor) {
std::vector<const FieldDescriptor*> fields(descriptor->field_count());
for (int i = 0; i < descriptor->field_count(); i++) {
fields[i] = descriptor->field(i);
}
std::sort(fields.begin(), fields.end(), FieldOrderingByNumber());
return fields;
}
// Functor for sorting extension ranges by their "start" field number.
struct ExtensionRangeSorter {
bool operator()(const Descriptor::ExtensionRange* left,
const Descriptor::ExtensionRange* right) const {
return left->start < right->start;
}
};
bool IsPOD(const FieldDescriptor* field) {
if (field->is_repeated() || field->is_extension()) return false;
switch (field->cpp_type()) {
case FieldDescriptor::CPPTYPE_ENUM:
case FieldDescriptor::CPPTYPE_INT32:
case FieldDescriptor::CPPTYPE_INT64:
case FieldDescriptor::CPPTYPE_UINT32:
case FieldDescriptor::CPPTYPE_UINT64:
case FieldDescriptor::CPPTYPE_FLOAT:
case FieldDescriptor::CPPTYPE_DOUBLE:
case FieldDescriptor::CPPTYPE_BOOL:
return true;
case FieldDescriptor::CPPTYPE_STRING:
return false;
default:
return false;
}
}
// Helper for the code that emits the SharedCtor() method.
bool CanConstructByZeroing(const FieldDescriptor* field,
const Options& options) {
bool ret = CanInitializeByZeroing(field);
// Non-repeated, non-lazy message fields are simply raw pointers, so we can
// use memset to initialize these in SharedCtor. We cannot use this in
// Clear, as we need to potentially delete the existing value.
ret = ret ||
(!field->is_repeated() &&
field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE);
return ret;
}
// Emits an if-statement with a condition that evaluates to true if |field| is
// considered non-default (will be sent over the wire), for message types
// without true field presence. Should only be called if
// !HasFieldPresence(message_descriptor).
bool EmitFieldNonDefaultCondition(io::Printer* printer,
const string& prefix,
const FieldDescriptor* field) {
// Merge and serialize semantics: primitive fields are merged/serialized only
// if non-zero (numeric) or non-empty (string).
if (!field->is_repeated() && !field->containing_oneof()) {
if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
printer->Print(
"if ($prefix$$name$().size() > 0) {\n",
"prefix", prefix,
"name", FieldName(field));
} else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
// Message fields still have has_$name$() methods.
printer->Print(
"if ($prefix$has_$name$()) {\n",
"prefix", prefix,
"name", FieldName(field));
} else {
printer->Print(
"if ($prefix$$name$() != 0) {\n",
"prefix", prefix,
"name", FieldName(field));
}
printer->Indent();
return true;
} else if (field->containing_oneof()) {
printer->Print(
"if (has_$name$()) {\n",
"name", FieldName(field));
printer->Indent();
return true;
}
return false;
}
// Does the given field have a has_$name$() method?
bool HasHasMethod(const FieldDescriptor* field) {
if (HasFieldPresence(field->file())) {
// In proto1/proto2, every field has a has_$name$() method.
return true;
}
// For message types without true field presence, only fields with a message
// type have a has_$name$() method.
return field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE;
}
// Collects map entry message type information.
void CollectMapInfo(const Descriptor* descriptor,
std::map<string, string>* variables) {
GOOGLE_CHECK(IsMapEntryMessage(descriptor));
std::map<string, string>& vars = *variables;
const FieldDescriptor* key = descriptor->FindFieldByName("key");
const FieldDescriptor* val = descriptor->FindFieldByName("value");
vars["key_cpp"] = PrimitiveTypeName(key->cpp_type());
switch (val->cpp_type()) {
case FieldDescriptor::CPPTYPE_MESSAGE:
vars["val_cpp"] = FieldMessageTypeName(val);
break;
case FieldDescriptor::CPPTYPE_ENUM:
vars["val_cpp"] = ClassName(val->enum_type(), true);
break;
default:
vars["val_cpp"] = PrimitiveTypeName(val->cpp_type());
}
vars["key_wire_type"] = "::google::protobuf::internal::WireFormatLite::TYPE_" +
ToUpper(DeclaredTypeMethodName(key->type()));
vars["val_wire_type"] = "::google::protobuf::internal::WireFormatLite::TYPE_" +
ToUpper(DeclaredTypeMethodName(val->type()));
if (descriptor->file()->syntax() != FileDescriptor::SYNTAX_PROTO3 &&
val->type() == FieldDescriptor::TYPE_ENUM) {
const EnumValueDescriptor* default_value = val->default_value_enum();
vars["default_enum_value"] = Int32ToString(default_value->number());
} else {
vars["default_enum_value"] = "0";
}
}
// Does the given field have a private (internal helper only) has_$name$()
// method?
bool HasPrivateHasMethod(const FieldDescriptor* field) {
// Only for oneofs in message types with no field presence. has_$name$(),
// based on the oneof case, is still useful internally for generated code.
return (!HasFieldPresence(field->file()) &&
field->containing_oneof() != NULL);
}
bool TableDrivenParsingEnabled(
const Descriptor* descriptor, const Options& options) {
if (!options.table_driven_parsing) {
return false;
}
// Consider table-driven parsing. We only do this if:
// - We have has_bits for fields. This avoids a check on every field we set
// when are present (the common case).
if (!HasFieldPresence(descriptor->file())) {
return false;
}
const double table_sparseness = 0.5;
int max_field_number = 0;
for (int i = 0; i < descriptor->field_count(); i++) {
const FieldDescriptor* field = descriptor->field(i);
if (max_field_number < field->number()) {
max_field_number = field->number();
}
// - There are no weak fields.
if (field->options().weak()) {
return false;
}
}
// - There range of field numbers is "small"
if (max_field_number >= (2 << 14)) {
return false;
}
// - Field numbers are relatively dense within the actual number of fields.
// We check for strictly greater than in the case where there are no fields
// (only extensions) so max_field_number == descriptor->field_count() == 0.
if (max_field_number * table_sparseness > descriptor->field_count()) {
return false;
}
// - This is not a MapEntryMessage.
if (IsMapEntryMessage(descriptor)) {
return false;
}
return true;
}
void SetUnknkownFieldsVariable(const Descriptor* descriptor,
const Options& options,
std::map<string, string>* variables) {
if (UseUnknownFieldSet(descriptor->file(), options)) {
(*variables)["unknown_fields_type"] = "::google::protobuf::UnknownFieldSet";
} else {
(*variables)["unknown_fields_type"] = "::std::string";
}
if (AlwaysPreserveUnknownFields(descriptor)) {
(*variables)["have_unknown_fields"] =
"_internal_metadata_.have_unknown_fields()";
(*variables)["unknown_fields"] = "_internal_metadata_.unknown_fields()";
} else {
(*variables)["have_unknown_fields"] =
"(_internal_metadata_.have_unknown_fields() && "
" ::google::protobuf::internal::GetProto3PreserveUnknownsDefault())";
(*variables)["unknown_fields"] =
"(::google::protobuf::internal::GetProto3PreserveUnknownsDefault()"
" ? _internal_metadata_.unknown_fields()"
" : _internal_metadata_.default_instance())";
}
(*variables)["mutable_unknown_fields"] =
"_internal_metadata_.mutable_unknown_fields()";
}
bool IsCrossFileMapField(const FieldDescriptor* field) {
if (!field->is_map()) {
return false;
}
const Descriptor* d = field->message_type();
const FieldDescriptor* value = d->FindFieldByNumber(2);
return IsCrossFileMessage(value);
}
bool IsCrossFileMaybeMap(const FieldDescriptor* field) {
if (IsCrossFileMapField(field)) {
return true;
}
return IsCrossFileMessage(field);
}
bool IsRequired(const std::vector<const FieldDescriptor*>& v) {
return v.front()->is_required();
}
// Allows chunking repeated fields together and non-repeated fields if the
// fields share the same has_byte index.
// TODO(seongkim): use lambda with capture instead of functor.
class MatchRepeatedAndHasByte {
public:
MatchRepeatedAndHasByte(const std::vector<int>* has_bit_indices,
bool has_field_presence)
: has_bit_indices_(*has_bit_indices),
has_field_presence_(has_field_presence) {}
// Returns true if the following conditions are met:
// --both fields are repeated fields
// --both fields are non-repeated fields with either has_field_presence is
// false or have the same has_byte index.
bool operator()(const FieldDescriptor* a, const FieldDescriptor* b) const {
return a->is_repeated() == b->is_repeated() &&
(!has_field_presence_ || a->is_repeated() ||
has_bit_indices_[a->index()] / 8 ==
has_bit_indices_[b->index()] / 8);
}
private:
const std::vector<int>& has_bit_indices_;
const bool has_field_presence_;
};
// Allows chunking required fields separately after chunking with
// MatchRepeatedAndHasByte.
class MatchRepeatedAndHasByteAndRequired : public MatchRepeatedAndHasByte {
public:
MatchRepeatedAndHasByteAndRequired(const std::vector<int>* has_bit_indices,
bool has_field_presence)
: MatchRepeatedAndHasByte(has_bit_indices, has_field_presence) {}
bool operator()(const FieldDescriptor* a, const FieldDescriptor* b) const {
return MatchRepeatedAndHasByte::operator()(a, b) &&
a->is_required() == b->is_required();
}
};
// Allows chunking zero-initializable fields separately after chunking with
// MatchRepeatedAndHasByte.
class MatchRepeatedAndHasByteAndZeroInits : public MatchRepeatedAndHasByte {
public:
MatchRepeatedAndHasByteAndZeroInits(const std::vector<int>* has_bit_indices,
bool has_field_presence)
: MatchRepeatedAndHasByte(has_bit_indices, has_field_presence) {}
bool operator()(const FieldDescriptor* a, const FieldDescriptor* b) const {
return MatchRepeatedAndHasByte::operator()(a, b) &&
CanInitializeByZeroing(a) == CanInitializeByZeroing(b);
}
};
// Collects neighboring fields based on a given criteria (equivalent predicate).
template <typename Predicate>
std::vector<std::vector<const FieldDescriptor*> > CollectFields(
const std::vector<const FieldDescriptor*>& fields,
const Predicate& equivalent) {
std::vector<std::vector<const FieldDescriptor*> > chunks;
if (fields.empty()) {
return chunks;
}
const FieldDescriptor* last_field = fields.front();
std::vector<const FieldDescriptor*> chunk;
for (int i = 0; i < fields.size(); i++) {
if (!equivalent(last_field, fields[i]) && !chunk.empty()) {
chunks.push_back(chunk);
chunk.clear();
}
chunk.push_back(fields[i]);
last_field = fields[i];
}
if (!chunk.empty()) {
chunks.push_back(chunk);
}
return chunks;
}
// Returns a bit mask based on has_bit index of "fields" that are typically on
// the same chunk. It is used in a group presence check where _has_bits_ is
// masked to tell if any thing in "fields" is present.
uint32 GenChunkMask(const std::vector<const FieldDescriptor*>& fields,
const std::vector<int>& has_bit_indices) {
GOOGLE_CHECK(!fields.empty());
int first_index_offset = has_bit_indices[fields.front()->index()] / 32;
uint32 chunk_mask = 0;
for (int i = 0; i < fields.size(); i++) {
const FieldDescriptor* field = fields[i];
// "index" defines where in the _has_bits_ the field appears.
int index = has_bit_indices[field->index()];
GOOGLE_CHECK_EQ(first_index_offset, index / 32);
chunk_mask |= static_cast<uint32>(1) << (index % 32);
}
GOOGLE_CHECK_NE(0, chunk_mask);
return chunk_mask;
}
} // anonymous namespace
// ===================================================================
MessageGenerator::MessageGenerator(const Descriptor* descriptor,
int index_in_file_messages,
const Options& options,
SCCAnalyzer* scc_analyzer)
: descriptor_(descriptor),
index_in_file_messages_(index_in_file_messages),
classname_(ClassName(descriptor, false)),
options_(options),
field_generators_(descriptor, options, scc_analyzer),
max_has_bit_index_(0),
enum_generators_(
new std::unique_ptr<EnumGenerator>[descriptor->enum_type_count()]),
extension_generators_(new std::unique_ptr<
ExtensionGenerator>[descriptor->extension_count()]),
num_weak_fields_(0),
message_layout_helper_(new PaddingOptimizer()),
scc_analyzer_(scc_analyzer) {
// Compute optimized field order to be used for layout and initialization
// purposes.
for (int i = 0; i < descriptor_->field_count(); i++) {
const FieldDescriptor* field = descriptor_->field(i);
if (field->options().weak()) {
num_weak_fields_++;
} else if (!field->containing_oneof()) {
optimized_order_.push_back(field);
}
}
message_layout_helper_->OptimizeLayout(&optimized_order_, options_);
if (HasFieldPresence(descriptor_->file())) {
// We use -1 as a sentinel.
has_bit_indices_.resize(descriptor_->field_count(), -1);
for (int i = 0; i < optimized_order_.size(); i++) {
const FieldDescriptor* field = optimized_order_[i];
// Skip fields that do not have has bits.
if (field->is_repeated()) {
continue;
}
has_bit_indices_[field->index()] = max_has_bit_index_++;
}
}
for (int i = 0; i < descriptor->enum_type_count(); i++) {
enum_generators_[i].reset(
new EnumGenerator(descriptor->enum_type(i), options));
}
for (int i = 0; i < descriptor->extension_count(); i++) {
extension_generators_[i].reset(
new ExtensionGenerator(descriptor->extension(i), options));
}
num_required_fields_ = 0;
for (int i = 0; i < descriptor->field_count(); i++) {
if (descriptor->field(i)->is_required()) {
++num_required_fields_;
}
}
table_driven_ = TableDrivenParsingEnabled(descriptor_, options_);
scc_name_ =
ClassName(scc_analyzer_->GetSCC(descriptor_)->GetRepresentative(), false);
}
MessageGenerator::~MessageGenerator() {}
size_t MessageGenerator::HasBitsSize() const {
size_t sizeof_has_bits = (max_has_bit_index_ + 31) / 32 * 4;
if (sizeof_has_bits == 0) {
// Zero-size arrays aren't technically allowed, and MSVC in particular
// doesn't like them. We still need to declare these arrays to make
// other code compile. Since this is an uncommon case, we'll just declare
// them with size 1 and waste some space. Oh well.
sizeof_has_bits = 4;
}
return sizeof_has_bits;
}
void MessageGenerator::AddGenerators(
std::vector<EnumGenerator*>* enum_generators,
std::vector<ExtensionGenerator*>* extension_generators) {
for (int i = 0; i < descriptor_->enum_type_count(); i++) {
enum_generators->push_back(enum_generators_[i].get());
}
for (int i = 0; i < descriptor_->extension_count(); i++) {
extension_generators->push_back(extension_generators_[i].get());
}
}
void MessageGenerator::FillMessageForwardDeclarations(
std::map<string, const Descriptor*>* class_names) {
(*class_names)[classname_] = descriptor_;
}
void MessageGenerator::
GenerateFieldAccessorDeclarations(io::Printer* printer) {
// optimized_fields_ does not contain fields where
// field->containing_oneof() != NULL
// so we need to iterate over those as well.
//
// We place the non-oneof fields in optimized_order_, as that controls the
// order of the _has_bits_ entries and we want GDB's pretty printers to be
// able to infer these indices from the k[FIELDNAME]FieldNumber order.
std::vector<const FieldDescriptor*> ordered_fields;
ordered_fields.reserve(descriptor_->field_count());
ordered_fields.insert(
ordered_fields.begin(), optimized_order_.begin(), optimized_order_.end());
for (int i = 0; i < descriptor_->field_count(); i++) {
const FieldDescriptor* field = descriptor_->field(i);
if (field->containing_oneof() == NULL && !field->options().weak()) {
continue;
}
ordered_fields.push_back(field);
}
for (int i = 0; i < ordered_fields.size(); i++) {
const FieldDescriptor* field = ordered_fields[i];
PrintFieldComment(printer, field);
std::map<string, string> vars;
SetCommonFieldVariables(field, &vars, options_);
vars["constant_name"] = FieldConstantName(field);
if (field->is_repeated()) {
printer->Print(vars, "$deprecated_attr$int ${$$name$_size$}$() const;\n");
printer->Annotate("{", "}", field);
} else if (HasHasMethod(field)) {
printer->Print(vars, "$deprecated_attr$bool ${$has_$name$$}$() const;\n");
printer->Annotate("{", "}", field);
} else if (HasPrivateHasMethod(field)) {
printer->Print(vars,
"private:\n"
"bool ${$has_$name$$}$() const;\n"
"public:\n");
printer->Annotate("{", "}", field);
}
printer->Print(vars, "$deprecated_attr$void ${$clear_$name$$}$();\n");
printer->Annotate("{", "}", field);
printer->Print(vars,
"$deprecated_attr$static const int $constant_name$ = "
"$number$;\n");
printer->Annotate("constant_name", field);
// Generate type-specific accessor declarations.
field_generators_.get(field).GenerateAccessorDeclarations(printer);
printer->Print("\n");
}
if (descriptor_->extension_range_count() > 0) {
// Generate accessors for extensions. We just call a macro located in
// extension_set.h since the accessors about 80 lines of static code.
printer->Print(
"GOOGLE_PROTOBUF_EXTENSION_ACCESSORS($classname$)\n",
"classname", classname_);
}
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
printer->Print(
"void clear_$oneof_name$();\n"
"$camel_oneof_name$Case $oneof_name$_case() const;\n",
"camel_oneof_name",
UnderscoresToCamelCase(descriptor_->oneof_decl(i)->name(), true),
"oneof_name", descriptor_->oneof_decl(i)->name());
}
}
void MessageGenerator::
GenerateSingularFieldHasBits(const FieldDescriptor* field,
std::map<string, string> vars,
io::Printer* printer) {
if (field->options().weak()) {
printer->Print(
vars,
"inline bool $classname$::has_$name$() const {\n"
" return _weak_field_map_.Has($number$);\n"
"}\n");
return;
}
if (HasFieldPresence(descriptor_->file())) {
// N.B.: without field presence, we do not use has-bits or generate
// has_$name$() methods.
int has_bit_index = has_bit_indices_[field->index()];
GOOGLE_CHECK_GE(has_bit_index, 0);
vars["has_array_index"] = SimpleItoa(has_bit_index / 32);
vars["has_mask"] = StrCat(strings::Hex(1u << (has_bit_index % 32),
strings::ZERO_PAD_8));
printer->Print(vars,
"inline bool $classname$::has_$name$() const {\n"
" return (_has_bits_[$has_array_index$] & 0x$has_mask$u) != 0;\n"
"}\n"
"inline void $classname$::set_has_$name$() {\n"
" _has_bits_[$has_array_index$] |= 0x$has_mask$u;\n"
"}\n"
"inline void $classname$::clear_has_$name$() {\n"
" _has_bits_[$has_array_index$] &= ~0x$has_mask$u;\n"
"}\n");
} else {
// Message fields have a has_$name$() method.
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
bool is_lazy = false;
if (is_lazy) {
printer->Print(vars,
"inline bool $classname$::has_$name$() const {\n"
" return !$name$_.IsCleared();\n"
"}\n");
} else {
printer->Print(
vars,
"inline bool $classname$::has_$name$() const {\n"
" return this != internal_default_instance() && $name$_ != NULL;\n"
"}\n");
}
}
}
}
void MessageGenerator::
GenerateOneofHasBits(io::Printer* printer) {
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
std::map<string, string> vars;
vars["oneof_name"] = descriptor_->oneof_decl(i)->name();
vars["oneof_index"] = SimpleItoa(descriptor_->oneof_decl(i)->index());
vars["cap_oneof_name"] =
ToUpper(descriptor_->oneof_decl(i)->name());
vars["classname"] = classname_;
printer->Print(
vars,
"inline bool $classname$::has_$oneof_name$() const {\n"
" return $oneof_name$_case() != $cap_oneof_name$_NOT_SET;\n"
"}\n"
"inline void $classname$::clear_has_$oneof_name$() {\n"
" _oneof_case_[$oneof_index$] = $cap_oneof_name$_NOT_SET;\n"
"}\n");
}
}
void MessageGenerator::
GenerateOneofMemberHasBits(const FieldDescriptor* field,
const std::map<string, string>& vars,
io::Printer* printer) {
// Singular field in a oneof
// N.B.: Without field presence, we do not use has-bits or generate
// has_$name$() methods, but oneofs still have set_has_$name$().
// Oneofs also have has_$name$() but only as a private helper
// method, so that generated code is slightly cleaner (vs. comparing
// _oneof_case_[index] against a constant everywhere).
printer->Print(vars,
"inline bool $classname$::has_$name$() const {\n"
" return $oneof_name$_case() == k$field_name$;\n"
"}\n");
printer->Print(vars,
"inline void $classname$::set_has_$name$() {\n"
" _oneof_case_[$oneof_index$] = k$field_name$;\n"
"}\n");
}
void MessageGenerator::
GenerateFieldClear(const FieldDescriptor* field,
const std::map<string, string>& vars,
bool is_inline,
io::Printer* printer) {
// Generate clear_$name$().
if (is_inline) {
printer->Print("inline ");
}
printer->Print(vars,
"void $classname$::clear_$name$() {\n");
printer->Indent();
if (field->containing_oneof()) {
// Clear this field only if it is the active field in this oneof,
// otherwise ignore
printer->Print(vars,
"if (has_$name$()) {\n");
printer->Indent();
field_generators_.get(field)
.GenerateClearingCode(printer);
printer->Print(vars,
"clear_has_$oneof_name$();\n");
printer->Outdent();
printer->Print("}\n");
} else {
field_generators_.get(field)
.GenerateClearingCode(printer);
if (HasFieldPresence(descriptor_->file())) {
if (!field->is_repeated() && !field->options().weak()) {
printer->Print(vars, "clear_has_$name$();\n");
}
}
}
printer->Outdent();
printer->Print("}\n");
}
void MessageGenerator::
GenerateFieldAccessorDefinitions(io::Printer* printer) {
printer->Print("// $classname$\n\n", "classname", classname_);
for (int i = 0; i < descriptor_->field_count(); i++) {
const FieldDescriptor* field = descriptor_->field(i);
PrintFieldComment(printer, field);
std::map<string, string> vars;
SetCommonFieldVariables(field, &vars, options_);
// Generate has_$name$() or $name$_size().
if (field->is_repeated()) {
printer->Print(vars,
"inline int $classname$::$name$_size() const {\n"
" return $name$_.size();\n"
"}\n");
} else if (field->containing_oneof()) {
vars["field_name"] = UnderscoresToCamelCase(field->name(), true);
vars["oneof_name"] = field->containing_oneof()->name();
vars["oneof_index"] = SimpleItoa(field->containing_oneof()->index());
GenerateOneofMemberHasBits(field, vars, printer);
} else {
// Singular field.
GenerateSingularFieldHasBits(field, vars, printer);
}
if (!IsCrossFileMaybeMap(field)) {
GenerateFieldClear(field, vars, true, printer);
}
// Generate type-specific accessors.
field_generators_.get(field).GenerateInlineAccessorDefinitions(printer);
printer->Print("\n");
}
// Generate has_$name$() and clear_has_$name$() functions for oneofs.
GenerateOneofHasBits(printer);
}
void MessageGenerator::
GenerateClassDefinition(io::Printer* printer) {
if (IsMapEntryMessage(descriptor_)) {
std::map<string, string> vars;
vars["classname"] = classname_;
CollectMapInfo(descriptor_, &vars);
vars["lite"] =
HasDescriptorMethods(descriptor_->file(), options_) ? "" : "Lite";
printer->Print(
vars,
"class $classname$ : public "
"::google::protobuf::internal::MapEntry$lite$<$classname$, \n"
" $key_cpp$, $val_cpp$,\n"
" $key_wire_type$,\n"
" $val_wire_type$,\n"
" $default_enum_value$ > {\n"
"public:\n"
" typedef ::google::protobuf::internal::MapEntry$lite$<$classname$, \n"
" $key_cpp$, $val_cpp$,\n"
" $key_wire_type$,\n"
" $val_wire_type$,\n"
" $default_enum_value$ > SuperType;\n"
" $classname$();\n"
" $classname$(::google::protobuf::Arena* arena);\n"
" void MergeFrom(const $classname$& other);\n"
" static const $classname$* internal_default_instance() { return "
"reinterpret_cast<const "
"$classname$*>(&_$classname$_default_instance_); }\n");
if (HasDescriptorMethods(descriptor_->file(), options_)) {
printer->Print(
" void MergeFrom(const ::google::protobuf::Message& other) final;\n"
" ::google::protobuf::Metadata GetMetadata() const;\n"
"};\n");
} else {
printer->Print("};\n");
}
return;
}
std::map<string, string> vars;
vars["classname"] = classname_;
vars["full_name"] = descriptor_->full_name();
vars["field_count"] = SimpleItoa(descriptor_->field_count());
vars["oneof_decl_count"] = SimpleItoa(descriptor_->oneof_decl_count());
if (options_.dllexport_decl.empty()) {
vars["dllexport"] = "";
} else {
vars["dllexport"] = options_.dllexport_decl + " ";
}
vars["superclass"] = SuperClassName(descriptor_, options_);
printer->Print(vars,
"class $dllexport$$classname$ : public $superclass$ "
"/* @@protoc_insertion_point(class_definition:$full_name$) */ "
"{\n");
printer->Annotate("classname", descriptor_);
printer->Print(" public:\n");
printer->Indent();
printer->Print(
vars,
"$classname$();\n"
"virtual ~$classname$();\n"
"\n"
"$classname$(const $classname$& from);\n"
"\n"
"inline $classname$& operator=(const $classname$& from) {\n"
" CopyFrom(from);\n"
" return *this;\n"
"}\n");
if (options_.table_driven_serialization) {
printer->Print(
"private:\n"
"const void* InternalGetTable() const;\n"
"public:\n"
"\n");
}
// Generate move constructor and move assignment operator.
printer->Print(vars,
"#if LANG_CXX11\n"
"$classname$($classname$&& from) noexcept\n"
" : $classname$() {\n"
" *this = ::std::move(from);\n"
"}\n"
"\n"
"inline $classname$& operator=($classname$&& from) noexcept {\n"
" if (GetArenaNoVirtual() == from.GetArenaNoVirtual()) {\n"
" if (this != &from) InternalSwap(&from);\n"
" } else {\n"
" CopyFrom(from);\n"
" }\n"
" return *this;\n"
"}\n"
"#endif\n");
SetUnknkownFieldsVariable(descriptor_, options_, &vars);
if (PublicUnknownFieldsAccessors(descriptor_)) {
printer->Print(vars,
"inline const $unknown_fields_type$& unknown_fields() const {\n"
" return $unknown_fields$;\n"
"}\n"
"inline $unknown_fields_type$* mutable_unknown_fields() {\n"
" return $mutable_unknown_fields$;\n"
"}\n"
"\n");
}
// N.B.: We exclude GetArena() when arena support is disabled, falling back on
// MessageLite's implementation which returns NULL rather than generating our
// own method which returns NULL, in order to reduce code size.
if (SupportsArenas(descriptor_)) {
// virtual method version of GetArenaNoVirtual(), required for generic dispatch given a
// MessageLite* (e.g., in RepeatedField::AddAllocated()).
printer->Print(
"inline ::google::protobuf::Arena* GetArena() const final {\n"
" return GetArenaNoVirtual();\n"
"}\n"
"inline void* GetMaybeArenaPointer() const final {\n"
" return MaybeArenaPtr();\n"
"}\n");
}
// Only generate this member if it's not disabled.
if (HasDescriptorMethods(descriptor_->file(), options_) &&
!descriptor_->options().no_standard_descriptor_accessor()) {
printer->Print(vars,
"static const ::google::protobuf::Descriptor* descriptor();\n");
}
printer->Print(vars,
"static const $classname$& default_instance();\n"
"\n");
// Generate enum values for every field in oneofs. One list is generated for
// each oneof with an additional *_NOT_SET value.
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
printer->Print(
"enum $camel_oneof_name$Case {\n",
"camel_oneof_name",
UnderscoresToCamelCase(descriptor_->oneof_decl(i)->name(), true));
printer->Indent();
for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) {
printer->Print(
"k$field_name$ = $field_number$,\n",
"field_name",
UnderscoresToCamelCase(
descriptor_->oneof_decl(i)->field(j)->name(), true),
"field_number",
SimpleItoa(descriptor_->oneof_decl(i)->field(j)->number()));
}
printer->Print(
"$cap_oneof_name$_NOT_SET = 0,\n",
"cap_oneof_name",
ToUpper(descriptor_->oneof_decl(i)->name()));
printer->Outdent();
printer->Print(
"};\n"
"\n");
}
// TODO(gerbens) make this private, while still granting other protos access.
vars["message_index"] = SimpleItoa(index_in_file_messages_);
printer->Print(
vars,
"static void InitAsDefaultInstance(); // FOR INTERNAL USE ONLY\n"
"static inline const $classname$* internal_default_instance() {\n"
" return reinterpret_cast<const $classname$*>(\n"
" &_$classname$_default_instance_);\n"
"}\n"
"static constexpr int kIndexInFileMessages =\n"
" $message_index$;\n"
"\n");
if (SupportsArenas(descriptor_)) {
printer->Print(vars,
"void UnsafeArenaSwap($classname$* other);\n");
}
if (IsAnyMessage(descriptor_)) {
printer->Print(vars,
"// implements Any -----------------------------------------------\n"
"\n"
"void PackFrom(const ::google::protobuf::Message& message);\n"
"void PackFrom(const ::google::protobuf::Message& message,\n"
" const ::std::string& type_url_prefix);\n"
"bool UnpackTo(::google::protobuf::Message* message) const;\n"
"template<typename T> bool Is() const {\n"
" return _any_metadata_.Is<T>();\n"
"}\n"
"static bool ParseAnyTypeUrl(const string& type_url,\n"
" string* full_type_name);\n"
"\n");
}
vars["new_final"] = " final";
printer->Print(vars,
"void Swap($classname$* other);\n"
"friend void swap($classname$& a, $classname$& b) {\n"
" a.Swap(&b);\n"
"}\n"
"\n"
"// implements Message ----------------------------------------------\n"
"\n"
"inline $classname$* New() const$new_final$ {\n"
" return CreateMaybeMessage<$classname$>(NULL);\n"
"}\n"
"\n"
"$classname$* New(::google::protobuf::Arena* arena) const$new_final$ {\n"
" return CreateMaybeMessage<$classname$>(arena);\n"
"}\n");
// For instances that derive from Message (rather than MessageLite), some
// methods are virtual and should be marked as final.
string use_final = HasDescriptorMethods(descriptor_->file(), options_) ?
" final" : "";
if (HasGeneratedMethods(descriptor_->file(), options_)) {
if (HasDescriptorMethods(descriptor_->file(), options_)) {
printer->Print(vars,
"void CopyFrom(const ::google::protobuf::Message& from) final;\n"
"void MergeFrom(const ::google::protobuf::Message& from) final;\n");
} else {
printer->Print(vars,
"void CheckTypeAndMergeFrom(const ::google::protobuf::MessageLite& from)\n"
" final;\n");
}
vars["clear_final"] = " final";
vars["is_initialized_final"] = " final";
vars["merge_partial_final"] = " final";
printer->Print(
vars,
"void CopyFrom(const $classname$& from);\n"
"void MergeFrom(const $classname$& from);\n"
"void Clear()$clear_final$;\n"
"bool IsInitialized() const$is_initialized_final$;\n"
"\n"
"size_t ByteSizeLong() const final;\n"
"bool MergePartialFromCodedStream(\n"
" ::google::protobuf::io::CodedInputStream* input)$merge_partial_final$;\n");
if (!options_.table_driven_serialization ||
descriptor_->options().message_set_wire_format()) {
printer->Print(
"void SerializeWithCachedSizes(\n"
" ::google::protobuf::io::CodedOutputStream* output) const "
"final;\n");
}
// DiscardUnknownFields() is implemented in message.cc using reflections. We
// need to implement this function in generated code for messages.
if (!UseUnknownFieldSet(descriptor_->file(), options_)) {
printer->Print(
"void DiscardUnknownFields()$final$;\n",
"final", use_final);
}
if (HasFastArraySerialization(descriptor_->file(), options_)) {
printer->Print(
"::google::protobuf::uint8* InternalSerializeWithCachedSizesToArray(\n"
" bool deterministic, ::google::protobuf::uint8* target) const final;\n");
}
}
printer->Print(
"int GetCachedSize() const final { return _cached_size_.Get(); }"
"\n\nprivate:\n"
"void SharedCtor();\n"
"void SharedDtor();\n"
"void SetCachedSize(int size) const$final$;\n"
"void InternalSwap($classname$* other);\n",
"classname", classname_, "final", use_final);
if (SupportsArenas(descriptor_)) {
printer->Print(
// TODO(gerbens) Make this private! Currently people are deriving from
// protos to give access to this constructor, breaking the invariants
// we rely on.
"protected:\n"
"explicit $classname$(::google::protobuf::Arena* arena);\n"
"private:\n"
"static void ArenaDtor(void* object);\n"
"inline void RegisterArenaDtor(::google::protobuf::Arena* arena);\n",
"classname", classname_);
}
if (SupportsArenas(descriptor_)) {
printer->Print(
"private:\n"
"inline ::google::protobuf::Arena* GetArenaNoVirtual() const {\n"
" return _internal_metadata_.arena();\n"
"}\n"
"inline void* MaybeArenaPtr() const {\n"
" return _internal_metadata_.raw_arena_ptr();\n"
"}\n");
} else {
printer->Print(
"private:\n"
"inline ::google::protobuf::Arena* GetArenaNoVirtual() const {\n"
" return NULL;\n"
"}\n"
"inline void* MaybeArenaPtr() const {\n"
" return NULL;\n"
"}\n");
}
printer->Print(
"public:\n"
"\n");
if (HasDescriptorMethods(descriptor_->file(), options_)) {
printer->Print(
"::google::protobuf::Metadata GetMetadata() const final;\n"
"\n");
} else {
printer->Print(
"::std::string GetTypeName() const final;\n"
"\n");
}
printer->Print(
"// nested types ----------------------------------------------------\n"
"\n");
// Import all nested message classes into this class's scope with typedefs.
for (int i = 0; i < descriptor_->nested_type_count(); i++) {
const Descriptor* nested_type = descriptor_->nested_type(i);
if (!IsMapEntryMessage(nested_type)) {
printer->Print("typedef $nested_full_name$ $nested_name$;\n",
"nested_name", nested_type->name(),
"nested_full_name", ClassName(nested_type, false));
printer->Annotate("nested_full_name", nested_type);
printer->Annotate("nested_name", nested_type);
}
}
if (descriptor_->nested_type_count() > 0) {
printer->Print("\n");
}
// Import all nested enums and their values into this class's scope with
// typedefs and constants.
for (int i = 0; i < descriptor_->enum_type_count(); i++) {
enum_generators_[i]->GenerateSymbolImports(printer);
printer->Print("\n");
}
printer->Print(
"// accessors -------------------------------------------------------\n"
"\n");
// Generate accessor methods for all fields.
GenerateFieldAccessorDeclarations(printer);
// Declare extension identifiers.
for (int i = 0; i < descriptor_->extension_count(); i++) {
extension_generators_[i]->GenerateDeclaration(printer);
}
printer->Print(
"// @@protoc_insertion_point(class_scope:$full_name$)\n",
"full_name", descriptor_->full_name());
// Generate private members.
printer->Outdent();
printer->Print(" private:\n");
printer->Indent();
for (int i = 0; i < descriptor_->field_count(); i++) {
if (!descriptor_->field(i)->is_repeated() &&
!descriptor_->field(i)->options().weak()) {
// set_has_***() generated in all proto1/2 code and in oneofs (only) for
// messages without true field presence.
if (HasFieldPresence(descriptor_->file()) ||
descriptor_->field(i)->containing_oneof()) {
printer->Print("void set_has_$name$();\n", "name",
FieldName(descriptor_->field(i)));
}
// clear_has_***() generated only for non-oneof fields
// in proto1/2.
if (!descriptor_->field(i)->containing_oneof() &&
HasFieldPresence(descriptor_->file())) {
printer->Print("void clear_has_$name$();\n", "name",
FieldName(descriptor_->field(i)));
}
}
}
printer->Print("\n");
// Generate oneof function declarations
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
printer->Print(
"inline bool has_$oneof_name$() const;\n"
"inline void clear_has_$oneof_name$();\n\n",
"oneof_name", descriptor_->oneof_decl(i)->name());
}
if (HasGeneratedMethods(descriptor_->file(), options_) &&
!descriptor_->options().message_set_wire_format() &&
num_required_fields_ > 1) {
printer->Print(
"// helper for ByteSizeLong()\n"
"size_t RequiredFieldsByteSizeFallback() const;\n\n");
}
// Prepare decls for _cached_size_ and _has_bits_. Their position in the
// output will be determined later.
bool need_to_emit_cached_size = true;
// TODO(kenton): Make _cached_size_ an atomic<int> when C++ supports it.
const string cached_size_decl =
"mutable ::google::protobuf::internal::CachedSize _cached_size_;\n";
const size_t sizeof_has_bits = HasBitsSize();
const string has_bits_decl = sizeof_has_bits == 0 ? "" :
"::google::protobuf::internal::HasBits<" + SimpleItoa(sizeof_has_bits / 4) +
"> _has_bits_;\n";
// To minimize padding, data members are divided into three sections:
// (1) members assumed to align to 8 bytes
// (2) members corresponding to message fields, re-ordered to optimize
// alignment.
// (3) members assumed to align to 4 bytes.
// Members assumed to align to 8 bytes:
if (descriptor_->extension_range_count() > 0) {
printer->Print(
"::google::protobuf::internal::ExtensionSet _extensions_;\n"
"\n");
}
if (UseUnknownFieldSet(descriptor_->file(), options_)) {
printer->Print(
"::google::protobuf::internal::InternalMetadataWithArena _internal_metadata_;\n");
} else {
printer->Print(
"::google::protobuf::internal::InternalMetadataWithArenaLite "
"_internal_metadata_;\n");
}
if (SupportsArenas(descriptor_)) {
printer->Print(
"template <typename T> friend class ::google::protobuf::Arena::InternalHelper;\n"
"typedef void InternalArenaConstructable_;\n"
"typedef void DestructorSkippable_;\n");
}
if (HasFieldPresence(descriptor_->file())) {
// _has_bits_ is frequently accessed, so to reduce code size and improve
// speed, it should be close to the start of the object. But, try not to
// waste space:_has_bits_ by itself always makes sense if its size is a
// multiple of 8, but, otherwise, maybe _has_bits_ and cached_size_ together
// will work well.
printer->Print(has_bits_decl.c_str());
if ((sizeof_has_bits % 8) != 0) {
printer->Print(cached_size_decl.c_str());
need_to_emit_cached_size = false;
}
}
// Field members:
// Emit some private and static members
for (int i = 0; i < optimized_order_.size(); ++i) {
const FieldDescriptor* field = optimized_order_[i];
const FieldGenerator& generator = field_generators_.get(field);
generator.GenerateStaticMembers(printer);
generator.GeneratePrivateMembers(printer);
}
// For each oneof generate a union
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
printer->Print(
"union $camel_oneof_name$Union {\n"
// explicit empty constructor is needed when union contains
// ArenaStringPtr members for string fields.
" $camel_oneof_name$Union() {}\n",
"camel_oneof_name",
UnderscoresToCamelCase(descriptor_->oneof_decl(i)->name(), true));
printer->Indent();
for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) {
field_generators_.get(descriptor_->oneof_decl(i)->
field(j)).GeneratePrivateMembers(printer);
}
printer->Outdent();
printer->Print(
"} $oneof_name$_;\n",
"oneof_name", descriptor_->oneof_decl(i)->name());
for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) {
field_generators_.get(descriptor_->oneof_decl(i)->
field(j)).GenerateStaticMembers(printer);
}
}
// Members assumed to align to 4 bytes:
if (need_to_emit_cached_size) {
printer->Print(cached_size_decl.c_str());
need_to_emit_cached_size = false;
}
// Generate _oneof_case_.
if (descriptor_->oneof_decl_count() > 0) {
printer->Print(vars,
"::google::protobuf::uint32 _oneof_case_[$oneof_decl_count$];\n"
"\n");
}
if (num_weak_fields_) {
printer->Print(
"::google::protobuf::internal::WeakFieldMap _weak_field_map_;\n");
}
// Generate _any_metadata_ for the Any type.
if (IsAnyMessage(descriptor_)) {
printer->Print(vars,
"::google::protobuf::internal::AnyMetadata _any_metadata_;\n");
}
// The TableStruct struct needs access to the private parts, in order to
// construct the offsets of all members.
printer->Print("friend struct ::$file_namespace$::TableStruct;\n",
// Vars.
"scc_name", scc_name_, "file_namespace",
FileLevelNamespace(descriptor_));
printer->Outdent();
printer->Print("};");
GOOGLE_DCHECK(!need_to_emit_cached_size);
}
void MessageGenerator::
GenerateInlineMethods(io::Printer* printer) {
if (IsMapEntryMessage(descriptor_)) return;
GenerateFieldAccessorDefinitions(printer);
// Generate oneof_case() functions.
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
std::map<string, string> vars;
vars["class_name"] = classname_;
vars["camel_oneof_name"] = UnderscoresToCamelCase(
descriptor_->oneof_decl(i)->name(), true);
vars["oneof_name"] = descriptor_->oneof_decl(i)->name();
vars["oneof_index"] = SimpleItoa(descriptor_->oneof_decl(i)->index());
printer->Print(
vars,
"inline $class_name$::$camel_oneof_name$Case $class_name$::"
"$oneof_name$_case() const {\n"
" return $class_name$::$camel_oneof_name$Case("
"_oneof_case_[$oneof_index$]);\n"
"}\n");
}
}
void MessageGenerator::
GenerateExtraDefaultFields(io::Printer* printer) {
// Generate oneof default instance and weak field instances for reflection
// usage.
if (descriptor_->oneof_decl_count() > 0 || num_weak_fields_ > 0) {
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) {
const FieldDescriptor* field = descriptor_->oneof_decl(i)->field(j);
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE ||
(field->cpp_type() == FieldDescriptor::CPPTYPE_STRING &&
EffectiveStringCType(field) != FieldOptions::STRING)) {
printer->Print("const ");
}
field_generators_.get(field).GeneratePrivateMembers(printer);
}
}
for (int i = 0; i < descriptor_->field_count(); i++) {
const FieldDescriptor* field = descriptor_->field(i);
if (field->options().weak()) {
printer->Print(
" const ::google::protobuf::Message* $name$_;\n", "name", FieldName(field));
}
}
}
}
bool MessageGenerator::GenerateParseTable(io::Printer* printer, size_t offset,
size_t aux_offset) {
if (!table_driven_) {
printer->Print("{ NULL, NULL, 0, -1, -1, -1, -1, NULL, false },\n");
return false;
}
std::map<string, string> vars;
vars["classname"] = ClassName(descriptor_);
vars["classtype"] = QualifiedClassName(descriptor_);
vars["offset"] = SimpleItoa(offset);
vars["aux_offset"] = SimpleItoa(aux_offset);
int max_field_number = 0;
for (int i = 0; i < descriptor_->field_count(); i++) {
const FieldDescriptor* field = descriptor_->field(i);
if (max_field_number < field->number()) {
max_field_number = field->number();
}
}
vars["max_field_number"] = SimpleItoa(max_field_number);
printer->Print("{\n");
printer->Indent();
printer->Print(vars,
"TableStruct::entries + $offset$,\n"
"TableStruct::aux + $aux_offset$,\n"
"$max_field_number$,\n");
if (!HasFieldPresence(descriptor_->file())) {
// If we don't have field presence, then _has_bits_ does not exist.
printer->Print(vars, "-1,\n");
} else {
printer->Print(vars,
"GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET(\n"
" $classtype$, _has_bits_),\n");
}
if (descriptor_->oneof_decl_count() > 0) {
printer->Print(vars,
"GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET(\n"
" $classtype$, _oneof_case_),\n");
} else {
printer->Print("-1, // no _oneof_case_\n");
}
if (descriptor_->extension_range_count() > 0) {
printer->Print(vars,
"GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classtype$, "
"_extensions_),\n");
} else {
printer->Print("-1, // no _extensions_\n");
}
// TODO(ckennelly): Consolidate this with the calculation for
// AuxillaryParseTableField.
vars["ns"] = Namespace(descriptor_);
printer->Print(vars,
"GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET(\n"
" $classtype$, _internal_metadata_),\n"
"&$ns$::_$classname$_default_instance_,\n");
if (UseUnknownFieldSet(descriptor_->file(), options_)) {
printer->Print(vars, "true,\n");
} else {
printer->Print(vars, "false,\n");
}
printer->Outdent();
printer->Print("},\n");
return true;
}
void MessageGenerator::GenerateSchema(io::Printer* printer, int offset,
int has_offset) {
std::map<string, string> vars;
vars["classname"] = QualifiedClassName(descriptor_);
vars["offset"] = SimpleItoa(offset);
vars["has_bits_offsets"] =
HasFieldPresence(descriptor_->file()) || IsMapEntryMessage(descriptor_)
? SimpleItoa(offset + has_offset)
: "-1";
printer->Print(vars,
"{ $offset$, $has_bits_offsets$, sizeof($classname$)},\n");
}
namespace {
// TODO(gerbens) remove this after the next sync with GitHub code base.
// Then the opensource testing has gained the functionality to compile
// the CalcFieldNum given the symbols defined in generated-message-util.
#ifdef OPENSOURCE_PROTOBUF_CPP_BOOTSTRAP
// We need a clean version of CalcFieldNum that doesn't use new functionality
// in the runtime, because this functionality is not yet in the opensource
// runtime
uint32 CalculateType(uint32 type, uint32 type_class) {
return (type - 1) + type_class * 20;
}
uint32 CalcFieldNum(const FieldGenerator&, const FieldDescriptor* field,
const Options& options) {
bool is_a_map = IsMapEntryMessage(field->containing_type());
int type = field->type();
if (field->containing_oneof()) {
return CalculateType(type, 4);
}
if (field->is_packed()) {
return CalculateType(type, 3);
} else if (field->is_repeated()) {
return CalculateType(type, 2);
} else if (!HasFieldPresence(field->file()) &&
field->containing_oneof() == NULL && !is_a_map) {
return CalculateType(type, 1);
} else {
return CalculateType(type, 0);
}
}
#else
// We need to calculate for each field what function the table driven code
// should use to serialize it. This returns the index in a lookup table.
uint32 CalcFieldNum(const FieldGenerator& generator,
const FieldDescriptor* field, const Options& options) {
bool is_a_map = IsMapEntryMessage(field->containing_type());
int type = field->type();
if (type == FieldDescriptor::TYPE_STRING ||
type == FieldDescriptor::TYPE_BYTES) {
if (generator.IsInlined()) {
type = internal::FieldMetadata::kInlinedType;
}
}
if (field->containing_oneof()) {
return internal::FieldMetadata::CalculateType(
type, internal::FieldMetadata::kOneOf);
}
if (field->is_packed()) {
return internal::FieldMetadata::CalculateType(
type, internal::FieldMetadata::kPacked);
} else if (field->is_repeated()) {
return internal::FieldMetadata::CalculateType(
type, internal::FieldMetadata::kRepeated);
} else if (!HasFieldPresence(field->file()) &&
field->containing_oneof() == NULL && !is_a_map) {
return internal::FieldMetadata::CalculateType(
type, internal::FieldMetadata::kNoPresence);
} else {
return internal::FieldMetadata::CalculateType(
type, internal::FieldMetadata::kPresence);
}
}
#endif
int FindMessageIndexInFile(const Descriptor* descriptor) {
std::vector<const Descriptor*> flatten =
FlattenMessagesInFile(descriptor->file());
return std::find(flatten.begin(), flatten.end(), descriptor) -
flatten.begin();
}
} // namespace
int MessageGenerator::GenerateFieldMetadata(io::Printer* printer) {
if (!options_.table_driven_serialization) {
return 0;
}
string full_classname = QualifiedClassName(descriptor_);
std::vector<const FieldDescriptor*> sorted = SortFieldsByNumber(descriptor_);
if (IsMapEntryMessage(descriptor_)) {
for (int i = 0; i < 2; i++) {
const FieldDescriptor* field = sorted[i];
const FieldGenerator& generator = field_generators_.get(field);
uint32 tag = internal::WireFormatLite::MakeTag(
field->number(), WireFormat::WireTypeForFieldType(field->type()));
std::map<string, string> vars;
vars["classname"] = QualifiedClassName(descriptor_);
vars["field_name"] = FieldName(field);
vars["tag"] = SimpleItoa(tag);
vars["hasbit"] = SimpleItoa(i);
vars["type"] = SimpleItoa(CalcFieldNum(generator, field, options_));
vars["ptr"] = "NULL";
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
GOOGLE_CHECK(!IsMapEntryMessage(field->message_type()));
{
vars["ptr"] =
"::" + FileLevelNamespace(field->message_type()) +
"::TableStruct::serialization_table + " +
SimpleItoa(FindMessageIndexInFile(field->message_type()));
}
}
printer->Print(vars,
"{GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET("
"::google::protobuf::internal::MapEntryHelper<$classname$::"
"SuperType>, $field_name$_), $tag$,"
"GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET("
"::google::protobuf::internal::MapEntryHelper<$classname$::"
"SuperType>, _has_bits_) * 8 + $hasbit$, $type$, "
"$ptr$},\n");
}
return 2;
}
printer->Print(
"{GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classname$, "
"_cached_size_), 0, 0, 0, NULL},\n",
"classname", full_classname);
std::vector<const Descriptor::ExtensionRange*> sorted_extensions;
for (int i = 0; i < descriptor_->extension_range_count(); ++i) {
sorted_extensions.push_back(descriptor_->extension_range(i));
}
std::sort(sorted_extensions.begin(), sorted_extensions.end(),
ExtensionRangeSorter());
for (int i = 0, extension_idx = 0; /* no range */; i++) {
for (; extension_idx < sorted_extensions.size() &&
(i == sorted.size() ||
sorted_extensions[extension_idx]->start < sorted[i]->number());
extension_idx++) {
const Descriptor::ExtensionRange* range =
sorted_extensions[extension_idx];
printer->Print(
"{GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classname$, "
"_extensions_), $start$, $end$, "
"::google::protobuf::internal::FieldMetadata::kSpecial, "
"reinterpret_cast<const "
"void*>(::google::protobuf::internal::ExtensionSerializer)},\n",
"classname", full_classname, "start", SimpleItoa(range->start), "end",
SimpleItoa(range->end));
}
if (i == sorted.size()) break;
const FieldDescriptor* field = sorted[i];
uint32 tag = internal::WireFormatLite::MakeTag(
field->number(), WireFormat::WireTypeForFieldType(field->type()));
if (field->is_packed()) {
tag = internal::WireFormatLite::MakeTag(
field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED);
}
string classfieldname = FieldName(field);
if (field->containing_oneof()) {
classfieldname = field->containing_oneof()->name();
}
std::map<string, string> vars;
vars["classname"] = full_classname;
vars["field_name"] = classfieldname;
vars["tag"] = SimpleItoa(tag);
vars["ptr"] = "NULL";
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
if (IsMapEntryMessage(field->message_type())) {
vars["idx"] = SimpleItoa(FindMessageIndexInFile(field->message_type()));
vars["fieldclassname"] = QualifiedClassName(field->message_type());
printer->Print(vars,
"{GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($"
"classname$, $field_name$_), $tag$, $idx$, "
"::google::protobuf::internal::FieldMetadata::kSpecial, "
"reinterpret_cast<const void*>(static_cast< "
"::google::protobuf::internal::SpecialSerializer>("
"::google::protobuf::internal::MapFieldSerializer< "
"::google::protobuf::internal::MapEntryToMapField<"
"$fieldclassname$>::MapFieldType, "
"TableStruct::serialization_table>))},\n");
continue;
} else {
vars["ptr"] =
"::" + FileLevelNamespace(field->message_type()) +
"::TableStruct::serialization_table + " +
SimpleItoa(FindMessageIndexInFile(field->message_type()));
}
}
const FieldGenerator& generator = field_generators_.get(field);
vars["type"] = SimpleItoa(CalcFieldNum(generator, field, options_));
if (field->options().weak()) {
// TODO(gerbens) merge weak fields into ranges
printer->Print(vars,
"{GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($"
"classname$, _weak_field_map_), $tag$, $tag$, "
"::google::protobuf::internal::FieldMetadata::kSpecial, "
"reinterpret_cast<const "
"void*>(::google::protobuf::internal::WeakFieldSerializer)},\n");
} else if (field->containing_oneof()) {
vars["oneofoffset"] =
SimpleItoa(sizeof(uint32) * field->containing_oneof()->index());
printer->Print(vars,
"{GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($"
"classname$, $field_name$_), $tag$, "
"GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($"
"classname$, _oneof_case_) + $oneofoffset$, "
"$type$, $ptr$},\n");
} else if (HasFieldPresence(descriptor_->file()) &&
has_bit_indices_[field->index()] != -1) {
vars["hasbitsoffset"] = SimpleItoa(has_bit_indices_[field->index()]);
printer->Print(vars,
"{GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($"
"classname$, $field_name$_), $tag$, "
"GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($"
"classname$, _has_bits_) * 8 + $hasbitsoffset$, $type$, "
"$ptr$},\n");
} else {
printer->Print(vars,
"{GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($"
"classname$, $field_name$_), $tag$, ~0u, $type$, "
"$ptr$},\n");
}
}
int num_field_metadata = 1 + sorted.size() + sorted_extensions.size();
num_field_metadata++;
string serializer = UseUnknownFieldSet(descriptor_->file(), options_)
? "::google::protobuf::internal::UnknownFieldSetSerializer"
: "::google::protobuf::internal::UnknownFieldSerializerLite";
printer->Print(
"{GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classname$, "
"_internal_metadata_), 0, ~0u, "
"::google::protobuf::internal::FieldMetadata::kSpecial, reinterpret_cast<const "
"void*>($serializer$)},\n",
"classname", full_classname, "serializer", serializer);
return num_field_metadata;
}
void MessageGenerator::GenerateFieldDefaultInstances(io::Printer* printer) {
// Construct the default instances for all fields that need one.
for (int i = 0; i < descriptor_->field_count(); i++) {
field_generators_.get(descriptor_->field(i))
.GenerateDefaultInstanceAllocator(printer);
}
}
void MessageGenerator::
GenerateDefaultInstanceInitializer(io::Printer* printer) {
// The default instance needs all of its embedded message pointers
// cross-linked to other default instances. We can't do this initialization
// in the constructor because some other default instances may not have been
// constructed yet at that time.
// TODO(kenton): Maybe all message fields (even for non-default messages)
// should be initialized to point at default instances rather than NULL?
for (int i = 0; i < descriptor_->field_count(); i++) {
const FieldDescriptor* field = descriptor_->field(i);
if (!field->is_repeated() &&
field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
(field->containing_oneof() == NULL ||
HasDescriptorMethods(descriptor_->file(), options_))) {
string name;
if (field->containing_oneof() || field->options().weak()) {
name = "_" + classname_ + "_default_instance_.";
} else {
name =
"_" + classname_ + "_default_instance_._instance.get_mutable()->";
}
name += FieldName(field);
printer->Print(
"$ns$::$name$_ = const_cast< $type$*>(\n"
" $type$::internal_default_instance());\n",
// Vars.
"name", name, "type", FieldMessageTypeName(field), "ns",
Namespace(descriptor_));
} else if (field->containing_oneof() &&
HasDescriptorMethods(descriptor_->file(), options_)) {
field_generators_.get(descriptor_->field(i))
.GenerateConstructorCode(printer);
}
}
}
void MessageGenerator::
GenerateClassMethods(io::Printer* printer) {
if (IsMapEntryMessage(descriptor_)) {
printer->Print(
"$classname$::$classname$() {}\n"
"$classname$::$classname$(::google::protobuf::Arena* arena) : "
"SuperType(arena) {}\n"
"void $classname$::MergeFrom(const $classname$& other) {\n"
" MergeFromInternal(other);\n"
"}\n",
"classname", classname_);
if (HasDescriptorMethods(descriptor_->file(), options_)) {
printer->Print(
"::google::protobuf::Metadata $classname$::GetMetadata() const {\n"
" ::$file_namespace$::protobuf_AssignDescriptorsOnce();\n"
" return ::$file_namespace$::file_level_metadata[$index$];\n"
"}\n"
"void $classname$::MergeFrom(\n"
" const ::google::protobuf::Message& other) {\n"
" ::google::protobuf::Message::MergeFrom(other);\n"
"}\n"
"\n",
"file_namespace", FileLevelNamespace(descriptor_),
"classname", classname_, "index",
SimpleItoa(index_in_file_messages_));
}
return;
}
// TODO(gerbens) Remove this function. With a little bit of cleanup and
// refactoring this is superfluous.
printer->Print("void $classname$::InitAsDefaultInstance() {\n", "classname",
classname_);
printer->Indent();
GenerateDefaultInstanceInitializer(printer);
printer->Outdent();
printer->Print("}\n");
if (IsAnyMessage(descriptor_)) {
printer->Print(
"void $classname$::PackFrom(const ::google::protobuf::Message& message) {\n"
" _any_metadata_.PackFrom(message);\n"
"}\n"
"\n"
"void $classname$::PackFrom(const ::google::protobuf::Message& message,\n"
" const ::std::string& type_url_prefix) {\n"
" _any_metadata_.PackFrom(message, type_url_prefix);\n"
"}\n"
"\n"
"bool $classname$::UnpackTo(::google::protobuf::Message* message) const {\n"
" return _any_metadata_.UnpackTo(message);\n"
"}\n"
"bool $classname$::ParseAnyTypeUrl(const string& type_url,\n"
" string* full_type_name) {\n"
" return ::google::protobuf::internal::ParseAnyTypeUrl(type_url,\n"
" full_type_name);\n"
"}\n"
"\n",
"classname", classname_);
}
// Generate non-inline field definitions.
for (int i = 0; i < descriptor_->field_count(); i++) {
const FieldDescriptor* field = descriptor_->field(i);
field_generators_.get(field)
.GenerateNonInlineAccessorDefinitions(printer);
if (IsCrossFileMaybeMap(field)) {
std::map<string, string> vars;
SetCommonFieldVariables(field, &vars, options_);
if (field->containing_oneof()) {
SetCommonOneofFieldVariables(field, &vars);
}
GenerateFieldClear(field, vars, false, printer);
}
}
// Generate field number constants.
printer->Print("#if !defined(_MSC_VER) || _MSC_VER >= 1900\n");
for (int i = 0; i < descriptor_->field_count(); i++) {
const FieldDescriptor *field = descriptor_->field(i);
printer->Print(
"const int $classname$::$constant_name$;\n",
"classname", ClassName(FieldScope(field), false),
"constant_name", FieldConstantName(field));
}
printer->Print(
"#endif // !defined(_MSC_VER) || _MSC_VER >= 1900\n"
"\n");
GenerateStructors(printer);
printer->Print("\n");
if (descriptor_->oneof_decl_count() > 0) {
GenerateOneofClear(printer);
printer->Print("\n");
}
if (HasGeneratedMethods(descriptor_->file(), options_)) {
GenerateClear(printer);
printer->Print("\n");
GenerateMergeFromCodedStream(printer);
printer->Print("\n");
GenerateSerializeWithCachedSizes(printer);
printer->Print("\n");
if (HasFastArraySerialization(descriptor_->file(), options_)) {
GenerateSerializeWithCachedSizesToArray(printer);
printer->Print("\n");
}
GenerateByteSize(printer);
printer->Print("\n");
GenerateMergeFrom(printer);
printer->Print("\n");
GenerateCopyFrom(printer);
printer->Print("\n");
GenerateIsInitialized(printer);
printer->Print("\n");
}
GenerateSwap(printer);
printer->Print("\n");
if (options_.table_driven_serialization) {
printer->Print(
"const void* $classname$::InternalGetTable() const {\n"
" return ::$file_namespace$::TableStruct::serialization_table + "
"$index$;\n"
"}\n"
"\n",
"classname", classname_, "index", SimpleItoa(index_in_file_messages_),
"file_namespace", FileLevelNamespace(descriptor_));
}
if (HasDescriptorMethods(descriptor_->file(), options_)) {
printer->Print(
"::google::protobuf::Metadata $classname$::GetMetadata() const {\n"
" $file_namespace$::protobuf_AssignDescriptorsOnce();\n"
" return ::"
"$file_namespace$::file_level_metadata[kIndexInFileMessages];\n"
"}\n"
"\n",
"classname", classname_, "file_namespace",
FileLevelNamespace(descriptor_));
} else {
printer->Print(
"::std::string $classname$::GetTypeName() const {\n"
" return \"$type_name$\";\n"
"}\n"
"\n",
"classname", classname_,
"type_name", descriptor_->full_name());
}
}
size_t MessageGenerator::GenerateParseOffsets(io::Printer* printer) {
if (!table_driven_) {
return 0;
}
// Field "0" is special: We use it in our switch statement of processing
// types to handle the successful end tag case.
printer->Print("{0, 0, 0, ::google::protobuf::internal::kInvalidMask, 0, 0},\n");
int last_field_number = 1;
std::vector<const FieldDescriptor*> ordered_fields =
SortFieldsByNumber(descriptor_);
for (int i = 0; i < descriptor_->field_count(); i++) {
const FieldDescriptor* field = ordered_fields[i];
GOOGLE_CHECK_GE(field->number(), last_field_number);
for (; last_field_number < field->number(); last_field_number++) {
printer->Print(
"{ 0, 0, ::google::protobuf::internal::kInvalidMask,\n"
" ::google::protobuf::internal::kInvalidMask, 0, 0 },\n");
}
last_field_number++;
unsigned char normal_wiretype, packed_wiretype, processing_type;
normal_wiretype = WireFormat::WireTypeForFieldType(field->type());
if (field->is_packable()) {
packed_wiretype = WireFormatLite::WIRETYPE_LENGTH_DELIMITED;
} else {
packed_wiretype = internal::kNotPackedMask;
}
processing_type = static_cast<unsigned>(field->type());
const FieldGenerator& generator = field_generators_.get(field);
if (field->type() == FieldDescriptor::TYPE_STRING) {
switch (EffectiveStringCType(field)) {
case FieldOptions::STRING:
default: {
if (generator.IsInlined()) {
processing_type = internal::TYPE_STRING_INLINED;
break;
}
break;
}
}
} else if (field->type() == FieldDescriptor::TYPE_BYTES) {
switch (EffectiveStringCType(field)) {
case FieldOptions::STRING:
default:
if (generator.IsInlined()) {
processing_type = internal::TYPE_BYTES_INLINED;
break;
}
break;
}
}
processing_type |= static_cast<unsigned>(
field->is_repeated() ? internal::kRepeatedMask : 0);
processing_type |= static_cast<unsigned>(
field->containing_oneof() ? internal::kOneofMask : 0);
if (field->is_map()) {
processing_type = internal::TYPE_MAP;
}
const unsigned char tag_size =
WireFormat::TagSize(field->number(), field->type());
std::map<string, string> vars;
vars["classname"] = QualifiedClassName(descriptor_);
if (field->containing_oneof() != NULL) {
vars["name"] = field->containing_oneof()->name();
vars["presence"] = SimpleItoa(field->containing_oneof()->index());
} else {
vars["name"] = FieldName(field);
vars["presence"] = SimpleItoa(has_bit_indices_[field->index()]);
}
vars["nwtype"] = SimpleItoa(normal_wiretype);
vars["pwtype"] = SimpleItoa(packed_wiretype);
vars["ptype"] = SimpleItoa(processing_type);
vars["tag_size"] = SimpleItoa(tag_size);
printer->Print(vars,
"{\n"
" GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET(\n"
" $classname$, $name$_),\n"
" static_cast<::google::protobuf::uint32>($presence$),\n"
" $nwtype$, $pwtype$, $ptype$, $tag_size$\n"
"},\n");
}
return last_field_number;
}
size_t MessageGenerator::GenerateParseAuxTable(io::Printer* printer) {
if (!table_driven_) {
return 0;
}
std::vector<const FieldDescriptor*> ordered_fields =
SortFieldsByNumber(descriptor_);
printer->Print("::google::protobuf::internal::AuxillaryParseTableField(),\n");
int last_field_number = 1;
for (int i = 0; i < descriptor_->field_count(); i++) {
const FieldDescriptor* field = ordered_fields[i];
GOOGLE_CHECK_GE(field->number(), last_field_number);
for (; last_field_number < field->number(); last_field_number++) {
printer->Print("::google::protobuf::internal::AuxillaryParseTableField(),\n");
}
std::map<string, string> vars;
SetCommonFieldVariables(field, &vars, options_);
switch (field->cpp_type()) {
case FieldDescriptor::CPPTYPE_ENUM:
vars["type"] = ClassName(field->enum_type(), true);
printer->Print(
vars,
"{::google::protobuf::internal::AuxillaryParseTableField::enum_aux{"
"$type$_IsValid}},\n");
last_field_number++;
break;
case FieldDescriptor::CPPTYPE_MESSAGE: {
if (field->is_map()) {
vars["classname"] = QualifiedClassName(field->message_type());
printer->Print(vars,
"{::google::protobuf::internal::AuxillaryParseTableField::map_"
"aux{&::google::protobuf::internal::ParseMap<$classname$>}},\n");
last_field_number++;
break;
} else {
vars["classname"] = ClassName(field->message_type(), false);
}
vars["ns"] = Namespace(field->message_type());
vars["type"] = FieldMessageTypeName(field);
vars["file_namespace"] =
FileLevelNamespace(field->message_type());
printer->Print(
vars,
"{::google::protobuf::internal::AuxillaryParseTableField::message_aux{\n"
" &$ns$::_$classname$_default_instance_}},\n");
last_field_number++;
break;
}
case FieldDescriptor::CPPTYPE_STRING:
switch (EffectiveStringCType(field)) {
case FieldOptions::STRING:
vars["default"] =
field->default_value_string().empty()
? "&::google::protobuf::internal::fixed_address_empty_string"
: "&" + Namespace(field) + " ::" + classname_ +
"::" + MakeDefaultName(field);
break;
case FieldOptions::CORD:
case FieldOptions::STRING_PIECE:
vars["default"] =
"\"" + CEscape(field->default_value_string()) + "\"";
break;
}
vars["full_name"] = field->full_name();
printer->Print(vars,
"{::google::protobuf::internal::AuxillaryParseTableField::string_aux{\n"
" $default$,\n"
" \"$full_name$\"\n"
"}},\n");
last_field_number++;
break;
default:
break;
}
}
return last_field_number;
}
std::pair<size_t, size_t> MessageGenerator::GenerateOffsets(
io::Printer* printer) {
std::map<string, string> variables;
string full_classname = QualifiedClassName(descriptor_);
variables["classname"] = full_classname;
if (HasFieldPresence(descriptor_->file()) || IsMapEntryMessage(descriptor_)) {
printer->Print(
variables,
"GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classname$, "
"_has_bits_),\n");
} else {
printer->Print("~0u, // no _has_bits_\n");
}
printer->Print(variables,
"GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classname$, "
"_internal_metadata_),\n");
if (descriptor_->extension_range_count() > 0) {
printer->Print(
variables,
"GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classname$, "
"_extensions_),\n");
} else {
printer->Print("~0u, // no _extensions_\n");
}
if (descriptor_->oneof_decl_count() > 0) {
printer->Print(variables,
"GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET("
"$classname$, _oneof_case_[0]),\n");
} else {
printer->Print("~0u, // no _oneof_case_\n");
}
if (num_weak_fields_ > 0) {
printer->Print(variables,
"GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classname$,"
" _weak_field_map_),\n");
} else {
printer->Print("~0u, // no _weak_field_map_\n");
}
const int kNumGenericOffsets = 5; // the number of fixed offsets above
const size_t offsets = kNumGenericOffsets +
descriptor_->field_count() +
descriptor_->oneof_decl_count();
size_t entries = offsets;
for (int i = 0; i < descriptor_->field_count(); i++) {
const FieldDescriptor* field = descriptor_->field(i);
if (field->containing_oneof() || field->options().weak()) {
printer->Print("offsetof($classname$DefaultTypeInternal, $name$_)",
"classname", full_classname, "name", FieldName(field));
} else {
printer->Print(
"GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classname$, $name$_)",
"classname", full_classname, "name", FieldName(field));
}
uint32 tag = field_generators_.get(field).CalculateFieldTag();
if (tag != 0) {
printer->Print(" | $tag$", "tag", SimpleItoa(tag));
}
printer->Print(",\n");
}
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
const OneofDescriptor* oneof = descriptor_->oneof_decl(i);
printer->Print(
"GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classname$, $name$_),\n",
"classname", full_classname, "name", oneof->name());
}
if (IsMapEntryMessage(descriptor_)) {
entries += 2;
printer->Print(
"0,\n"
"1,\n");
} else if (HasFieldPresence(descriptor_->file())) {
entries += has_bit_indices_.size();
for (int i = 0; i < has_bit_indices_.size(); i++) {
const string index = has_bit_indices_[i] >= 0 ?
SimpleItoa(has_bit_indices_[i]) : "~0u";
printer->Print("$index$,\n", "index", index);
}
}
return std::make_pair(entries, offsets);
}
void MessageGenerator::
GenerateSharedConstructorCode(io::Printer* printer) {
printer->Print(
"void $classname$::SharedCtor() {\n",
"classname", classname_);
printer->Indent();
std::vector<bool> processed(optimized_order_.size(), false);
GenerateConstructorBody(printer, processed, false);
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
printer->Print(
"clear_has_$oneof_name$();\n",
"oneof_name", descriptor_->oneof_decl(i)->name());
}
printer->Outdent();
printer->Print("}\n\n");
}
void MessageGenerator::
GenerateSharedDestructorCode(io::Printer* printer) {
printer->Print(
"void $classname$::SharedDtor() {\n",
"classname", classname_);
printer->Indent();
if (SupportsArenas(descriptor_)) {
printer->Print(
"GOOGLE_DCHECK(GetArenaNoVirtual() == NULL);\n");
}
// Write the destructors for each field except oneof members.
// optimized_order_ does not contain oneof fields.
for (int i = 0; i < optimized_order_.size(); i++) {
const FieldDescriptor* field = optimized_order_[i];
field_generators_.get(field).GenerateDestructorCode(printer);
}
// Generate code to destruct oneofs. Clearing should do the work.
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
printer->Print(
"if (has_$oneof_name$()) {\n"
" clear_$oneof_name$();\n"
"}\n",
"oneof_name", descriptor_->oneof_decl(i)->name());
}
if (num_weak_fields_) {
printer->Print("_weak_field_map_.ClearAll();\n");
}
printer->Outdent();
printer->Print(
"}\n"
"\n");
}
void MessageGenerator::
GenerateArenaDestructorCode(io::Printer* printer) {
// Generate the ArenaDtor() method. Track whether any fields actually produced
// code that needs to be called.
printer->Print(
"void $classname$::ArenaDtor(void* object) {\n",
"classname", classname_);
printer->Indent();
// This code is placed inside a static method, rather than an ordinary one,
// since that simplifies Arena's destructor list (ordinary function pointers
// rather than member function pointers). _this is the object being
// destructed.
printer->Print(
"$classname$* _this = reinterpret_cast< $classname$* >(object);\n"
// avoid an "unused variable" warning in case no fields have dtor code.
"(void)_this;\n",
"classname", classname_);
bool need_registration = false;
// Process non-oneof fields first.
for (int i = 0; i < optimized_order_.size(); i++) {
const FieldDescriptor* field = optimized_order_[i];
if (field_generators_.get(field)
.GenerateArenaDestructorCode(printer)) {
need_registration = true;
}
}
// Process oneof fields.
//
// Note: As of 10/5/2016, GenerateArenaDestructorCode does not emit anything
// and returns false for oneof fields.
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
const OneofDescriptor* oneof = descriptor_->oneof_decl(i);
for (int j = 0; j < oneof->field_count(); j++) {
const FieldDescriptor* field = oneof->field(j);
if (field_generators_.get(field)
.GenerateArenaDestructorCode(printer)) {
need_registration = true;
}
}
}
if (num_weak_fields_) {
// _this is the object being destructed (we are inside a static method
// here).
printer->Print("_this->_weak_field_map_.ClearAll();\n");
need_registration = true;
}
printer->Outdent();
printer->Print(
"}\n");
if (need_registration) {
printer->Print(
"inline void $classname$::RegisterArenaDtor(::google::protobuf::Arena* arena) {\n"
" if (arena != NULL) {\n"
" arena->OwnCustomDestructor(this, &$classname$::ArenaDtor);\n"
" }\n"
"}\n",
"classname", classname_);
} else {
printer->Print(
"void $classname$::RegisterArenaDtor(::google::protobuf::Arena* arena) {\n"
"}\n",
"classname", classname_);
}
}
void MessageGenerator::GenerateConstructorBody(io::Printer* printer,
std::vector<bool> processed,
bool copy_constructor) const {
const FieldDescriptor* last_start = NULL;
// RunMap maps from fields that start each run to the number of fields in that
// run. This is optimized for the common case that there are very few runs in
// a message and that most of the eligible fields appear together.
typedef hash_map<const FieldDescriptor*, size_t> RunMap;
RunMap runs;
for (int i = 0; i < optimized_order_.size(); ++i) {
const FieldDescriptor* field = optimized_order_[i];
if ((copy_constructor && IsPOD(field)) ||
(!copy_constructor && CanConstructByZeroing(field, options_))) {
if (last_start == NULL) {
last_start = field;
}
runs[last_start]++;
} else {
last_start = NULL;
}
}
string pod_template;
if (copy_constructor) {
pod_template =
"::memcpy(&$first$_, &from.$first$_,\n"
" static_cast<size_t>(reinterpret_cast<char*>(&$last$_) -\n"
" reinterpret_cast<char*>(&$first$_)) + sizeof($last$_));\n";
} else {
pod_template =
"::memset(&$first$_, 0, static_cast<size_t>(\n"
" reinterpret_cast<char*>(&$last$_) -\n"
" reinterpret_cast<char*>(&$first$_)) + sizeof($last$_));\n";
}
for (int i = 0; i < optimized_order_.size(); ++i) {
if (processed[i]) {
continue;
}
const FieldDescriptor* field = optimized_order_[i];
RunMap::const_iterator it = runs.find(field);
// We only apply the memset technique to runs of more than one field, as
// assignment is better than memset for generated code clarity.
if (it != runs.end() && it->second > 1) {
// Use a memset, then skip run_length fields.
const size_t run_length = it->second;
const string first_field_name = FieldName(field);
const string last_field_name =
FieldName(optimized_order_[i + run_length - 1]);
printer->Print(pod_template.c_str(),
"first", first_field_name,
"last", last_field_name);
i += run_length - 1;
// ++i at the top of the loop.
} else {
if (copy_constructor) {
field_generators_.get(field).GenerateCopyConstructorCode(printer);
} else {
field_generators_.get(field).GenerateConstructorCode(printer);
}
}
}
}
void MessageGenerator::
GenerateStructors(io::Printer* printer) {
string superclass;
superclass = SuperClassName(descriptor_, options_);
string initializer_with_arena = superclass + "()";
if (descriptor_->extension_range_count() > 0) {
initializer_with_arena += ",\n _extensions_(arena)";
}
initializer_with_arena += ",\n _internal_metadata_(arena)";
// Initialize member variables with arena constructor.
for (int i = 0; i < optimized_order_.size(); i++) {
const FieldDescriptor* field = optimized_order_[i];
bool has_arena_constructor = field->is_repeated();
if (has_arena_constructor) {
initializer_with_arena += string(",\n ") +
FieldName(field) + string("_(arena)");
}
}
if (IsAnyMessage(descriptor_)) {
initializer_with_arena += ",\n _any_metadata_(&type_url_, &value_)";
}
if (num_weak_fields_ > 0) {
initializer_with_arena += ", _weak_field_map_(arena)";
}
string initializer_null = superclass + "(), _internal_metadata_(NULL)";
if (IsAnyMessage(descriptor_)) {
initializer_null += ", _any_metadata_(&type_url_, &value_)";
}
if (num_weak_fields_ > 0) {
initializer_null += ", _weak_field_map_(nullptr)";
}
printer->Print(
"$classname$::$classname$()\n"
" : $initializer$ {\n"
" ::google::protobuf::internal::InitSCC(\n"
" &$file_namespace$::scc_info_$scc_name$.base);\n"
" SharedCtor();\n"
" // @@protoc_insertion_point(constructor:$full_name$)\n"
"}\n",
"classname", classname_, "full_name", descriptor_->full_name(),
"scc_name", scc_name_, "initializer", initializer_null, "file_namespace",
FileLevelNamespace(descriptor_));
if (SupportsArenas(descriptor_)) {
printer->Print(
"$classname$::$classname$(::google::protobuf::Arena* arena)\n"
" : $initializer$ {\n"
" "
"::google::protobuf::internal::InitSCC(&$file_namespace$::scc_info_$scc_name$."
"base);\n"
" SharedCtor();\n"
" RegisterArenaDtor(arena);\n"
" // @@protoc_insertion_point(arena_constructor:$full_name$)\n"
"}\n",
"initializer", initializer_with_arena, "classname", classname_,
"superclass", superclass, "full_name", descriptor_->full_name(),
"scc_name", scc_name_, "file_namespace",
FileLevelNamespace(descriptor_));
}
// Generate the copy constructor.
if (UsingImplicitWeakFields(descriptor_->file(), options_)) {
// If we are in lite mode and using implicit weak fields, we generate a
// one-liner copy constructor that delegates to MergeFrom. This saves some
// code size and also cuts down on the complexity of implicit weak fields.
// We might eventually want to do this for all lite protos.
printer->Print(
"$classname$::$classname$(const $classname$& from)\n"
" : $classname$() {\n"
" MergeFrom(from);\n"
"}\n",
"classname", classname_);
} else {
printer->Print(
"$classname$::$classname$(const $classname$& from)\n"
" : $superclass$()",
"classname", classname_,
"superclass", superclass,
"full_name", descriptor_->full_name());
printer->Indent();
printer->Indent();
printer->Indent();
printer->Print(
",\n_internal_metadata_(NULL)");
if (HasFieldPresence(descriptor_->file())) {
printer->Print(",\n_has_bits_(from._has_bits_)");
}
std::vector<bool> processed(optimized_order_.size(), false);
for (int i = 0; i < optimized_order_.size(); ++i) {
const FieldDescriptor* field = optimized_order_[i];
if (!(field->is_repeated() && !(field->is_map()))
) {
continue;
}
processed[i] = true;
printer->Print(",\n$name$_(from.$name$_)",
"name", FieldName(field));
}
if (IsAnyMessage(descriptor_)) {
printer->Print(",\n_any_metadata_(&type_url_, &value_)");
}
if (num_weak_fields_ > 0) {
printer->Print(",\n_weak_field_map_(from._weak_field_map_)");
}
printer->Outdent();
printer->Outdent();
printer->Print(" {\n");
printer->Print(
"_internal_metadata_.MergeFrom(from._internal_metadata_);\n");
if (descriptor_->extension_range_count() > 0) {
printer->Print("_extensions_.MergeFrom(from._extensions_);\n");
}
GenerateConstructorBody(printer, processed, true);
// Copy oneof fields. Oneof field requires oneof case check.
for (int i = 0; i < descriptor_->oneof_decl_count(); ++i) {
printer->Print(
"clear_has_$oneofname$();\n"
"switch (from.$oneofname$_case()) {\n",
"oneofname", descriptor_->oneof_decl(i)->name());
printer->Indent();
for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) {
const FieldDescriptor* field = descriptor_->oneof_decl(i)->field(j);
printer->Print(
"case k$field_name$: {\n",
"field_name", UnderscoresToCamelCase(field->name(), true));
printer->Indent();
field_generators_.get(field).GenerateMergingCode(printer);
printer->Print(
"break;\n");
printer->Outdent();
printer->Print(
"}\n");
}
printer->Print(
"case $cap_oneof_name$_NOT_SET: {\n"
" break;\n"
"}\n",
"oneof_index",
SimpleItoa(descriptor_->oneof_decl(i)->index()),
"cap_oneof_name",
ToUpper(descriptor_->oneof_decl(i)->name()));
printer->Outdent();
printer->Print(
"}\n");
}
printer->Outdent();
printer->Print(
" // @@protoc_insertion_point(copy_constructor:$full_name$)\n"
"}\n"
"\n",
"full_name", descriptor_->full_name());
}
// Generate the shared constructor code.
GenerateSharedConstructorCode(printer);
// Generate the destructor.
printer->Print(
"$classname$::~$classname$() {\n"
" // @@protoc_insertion_point(destructor:$full_name$)\n"
" SharedDtor();\n"
"}\n"
"\n",
"classname", classname_,
"full_name", descriptor_->full_name());
// Generate the shared destructor code.
GenerateSharedDestructorCode(printer);
// Generate the arena-specific destructor code.
if (SupportsArenas(descriptor_)) {
GenerateArenaDestructorCode(printer);
}
// Generate SetCachedSize.
printer->Print(
"void $classname$::SetCachedSize(int size) const {\n"
" _cached_size_.Set(size);\n"
"}\n",
"classname", classname_);
// Only generate this member if it's not disabled.
if (HasDescriptorMethods(descriptor_->file(), options_) &&
!descriptor_->options().no_standard_descriptor_accessor()) {
printer->Print(
"const ::google::protobuf::Descriptor* $classname$::descriptor() {\n"
" ::$file_namespace$::protobuf_AssignDescriptorsOnce();\n"
" return ::"
"$file_namespace$::file_level_metadata[kIndexInFileMessages]."
"descriptor;\n"
"}\n"
"\n",
"classname", classname_, "file_namespace",
FileLevelNamespace(descriptor_));
}
printer->Print(
"const $classname$& $classname$::default_instance() {\n"
" "
"::google::protobuf::internal::InitSCC(&$file_namespace$::scc_info_$scc_name$.base)"
";\n"
" return *internal_default_instance();\n"
"}\n\n",
"classname", classname_, "scc_name", scc_name_, "file_namespace",
FileLevelNamespace(descriptor_));
}
void MessageGenerator::GenerateSourceInProto2Namespace(io::Printer* printer) {
printer->Print(
"template<> "
"GOOGLE_PROTOBUF_ATTRIBUTE_NOINLINE "
"$classname$* Arena::CreateMaybeMessage< $classname$ >(Arena* arena) {\n"
" return Arena::$create_func$Internal< $classname$ >(arena);\n"
"}\n",
"classname", QualifiedClassName(descriptor_),
"create_func", MessageCreateFunction(descriptor_));
}
// Return the number of bits set in n, a non-negative integer.
static int popcnt(uint32 n) {
int result = 0;
while (n != 0) {
result += (n & 1);
n = n / 2;
}
return result;
}
bool MessageGenerator::MaybeGenerateOptionalFieldCondition(
io::Printer* printer, const FieldDescriptor* field,
int expected_has_bits_index) {
int has_bit_index = has_bit_indices_[field->index()];
if (!field->options().weak() &&
expected_has_bits_index == has_bit_index / 32) {
const string mask =
StrCat(strings::Hex(1u << (has_bit_index % 32), strings::ZERO_PAD_8));
printer->Print(
"if (cached_has_bits & 0x$mask$u) {\n",
"mask", mask);
return true;
}
return false;
}
void MessageGenerator::
GenerateClear(io::Printer* printer) {
// Performance tuning parameters
const int kMaxUnconditionalPrimitiveBytesClear = 4;
printer->Print(
"void $classname$::Clear() {\n"
"// @@protoc_insertion_point(message_clear_start:$full_name$)\n",
"classname", classname_, "full_name", descriptor_->full_name());
printer->Indent();
printer->Print(
// TODO(jwb): It would be better to avoid emitting this if it is not used,
// rather than emitting a workaround for the resulting warning.
"::google::protobuf::uint32 cached_has_bits = 0;\n"
"// Prevent compiler warnings about cached_has_bits being unused\n"
"(void) cached_has_bits;\n\n");
int cached_has_bit_index = -1;
// Step 1: Extensions
if (descriptor_->extension_range_count() > 0) {
printer->Print("_extensions_.Clear();\n");
}
int unconditional_budget = kMaxUnconditionalPrimitiveBytesClear;
for (int i = 0; i < optimized_order_.size(); i++) {
const FieldDescriptor* field = optimized_order_[i];
if (!CanInitializeByZeroing(field)) {
continue;
}
unconditional_budget -= EstimateAlignmentSize(field);
}
std::vector<std::vector<const FieldDescriptor*> > chunks_frag = CollectFields(
optimized_order_,
MatchRepeatedAndHasByteAndZeroInits(
&has_bit_indices_, HasFieldPresence(descriptor_->file())));
// Merge next non-zero initializable chunk if it has the same has_byte index
// and not meeting unconditional clear condition.
std::vector<std::vector<const FieldDescriptor*> > chunks;
if (!HasFieldPresence(descriptor_->file())) {
// Don't bother with merging without has_bit field.
chunks = chunks_frag;
} else {
// Note that only the next chunk is considered for merging.
for (int i = 0; i < chunks_frag.size(); i++) {
chunks.push_back(chunks_frag[i]);
const FieldDescriptor* field = chunks_frag[i].front();
const FieldDescriptor* next_field =
(i + 1) < chunks_frag.size() ? chunks_frag[i + 1].front() : nullptr;
if (CanInitializeByZeroing(field) &&
(chunks_frag[i].size() == 1 || unconditional_budget < 0) &&
next_field != nullptr &&
has_bit_indices_[field->index()] / 8 ==
has_bit_indices_[next_field->index()] / 8) {
GOOGLE_CHECK(!CanInitializeByZeroing(next_field));
// Insert next chunk to the current one and skip next chunk.
chunks.back().insert(chunks.back().end(), chunks_frag[i + 1].begin(),
chunks_frag[i + 1].end());
i++;
}
}
}
for (int chunk_index = 0; chunk_index < chunks.size(); chunk_index++) {
std::vector<const FieldDescriptor*>& chunk = chunks[chunk_index];
GOOGLE_CHECK(!chunk.empty());
// Step 2: Repeated fields don't use _has_bits_; emit code to clear them
// here.
if (chunk.front()->is_repeated()) {
for (int i = 0; i < chunk.size(); i++) {
const FieldDescriptor* field = chunk[i];
const FieldGenerator& generator = field_generators_.get(field);
generator.GenerateMessageClearingCode(printer);
}
continue;
}
// Step 3: Non-repeated fields that can be cleared by memset-to-0, then
// non-repeated, non-zero initializable fields.
int last_chunk = HasFieldPresence(descriptor_->file())
? has_bit_indices_[chunk.front()->index()] / 8
: 0;
int last_chunk_start = 0;
int memset_run_start = -1;
int memset_run_end = -1;
for (int i = 0; i < chunk.size(); i++) {
const FieldDescriptor* field = chunk[i];
if (CanInitializeByZeroing(field)) {
if (memset_run_start == -1) {
memset_run_start = i;
}
memset_run_end = i;
}
}
const bool have_outer_if =
HasFieldPresence(descriptor_->file()) && chunk.size() > 1 &&
(memset_run_end != chunk.size() - 1 || unconditional_budget < 0);
if (have_outer_if) {
uint32 last_chunk_mask = GenChunkMask(chunk, has_bit_indices_);
const int count = popcnt(last_chunk_mask);
// Check (up to) 8 has_bits at a time if we have more than one field in
// this chunk. Due to field layout ordering, we may check
// _has_bits_[last_chunk * 8 / 32] multiple times.
GOOGLE_DCHECK_LE(2, count);
GOOGLE_DCHECK_GE(8, count);
if (cached_has_bit_index != last_chunk / 4) {
cached_has_bit_index = last_chunk / 4;
printer->Print("cached_has_bits = _has_bits_[$idx$];\n", "idx",
SimpleItoa(cached_has_bit_index));
}
printer->Print("if (cached_has_bits & $mask$u) {\n", "mask",
SimpleItoa(last_chunk_mask));
printer->Indent();
}
if (memset_run_start != -1) {
if (memset_run_start == memset_run_end) {
// For clarity, do not memset a single field.
const FieldGenerator& generator =
field_generators_.get(chunk[memset_run_start]);
generator.GenerateMessageClearingCode(printer);
} else {
const string first_field_name = FieldName(chunk[memset_run_start]);
const string last_field_name = FieldName(chunk[memset_run_end]);
printer->Print(
"::memset(&$first$_, 0, static_cast<size_t>(\n"
" reinterpret_cast<char*>(&$last$_) -\n"
" reinterpret_cast<char*>(&$first$_)) + sizeof($last$_));\n",
"first", first_field_name, "last", last_field_name);
}
// Advance last_chunk_start to skip over the fields we zeroed/memset.
last_chunk_start = memset_run_end + 1;
}
// Go back and emit clears for each of the fields we processed.
for (int j = last_chunk_start; j < chunk.size(); j++) {
const FieldDescriptor* field = chunk[j];
const string fieldname = FieldName(field);
const FieldGenerator& generator = field_generators_.get(field);
// It's faster to just overwrite primitive types, but we should only
// clear strings and messages if they were set.
//
// TODO(kenton): Let the CppFieldGenerator decide this somehow.
bool should_check_bit =
field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE ||
field->cpp_type() == FieldDescriptor::CPPTYPE_STRING;
bool have_enclosing_if = false;
if (should_check_bit &&
// If no field presence, then always clear strings/messages as well.
HasFieldPresence(descriptor_->file())) {
if (!field->options().weak() &&
cached_has_bit_index != (has_bit_indices_[field->index()] / 32)) {
cached_has_bit_index = (has_bit_indices_[field->index()] / 32);
printer->Print("cached_has_bits = _has_bits_[$new_index$];\n",
"new_index", SimpleItoa(cached_has_bit_index));
}
if (!MaybeGenerateOptionalFieldCondition(printer, field,
cached_has_bit_index)) {
printer->Print("if (has_$name$()) {\n", "name", fieldname);
}
printer->Indent();
have_enclosing_if = true;
}
generator.GenerateMessageClearingCode(printer);
if (have_enclosing_if) {
printer->Outdent();
printer->Print("}\n");
}
}
if (have_outer_if) {
printer->Outdent();
printer->Print("}\n");
}
}
// Step 4: Unions.
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
printer->Print(
"clear_$oneof_name$();\n",
"oneof_name", descriptor_->oneof_decl(i)->name());
}
if (num_weak_fields_) {
printer->Print("_weak_field_map_.ClearAll();\n");
}
if (HasFieldPresence(descriptor_->file())) {
// Step 5: Everything else.
printer->Print("_has_bits_.Clear();\n");
}
printer->Print("_internal_metadata_.Clear();\n");
printer->Outdent();
printer->Print("}\n");
}
void MessageGenerator::
GenerateOneofClear(io::Printer* printer) {
// Generated function clears the active field and union case (e.g. foo_case_).
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
std::map<string, string> oneof_vars;
oneof_vars["classname"] = classname_;
oneof_vars["oneofname"] = descriptor_->oneof_decl(i)->name();
oneof_vars["full_name"] = descriptor_->full_name();
string message_class;
printer->Print(oneof_vars,
"void $classname$::clear_$oneofname$() {\n"
"// @@protoc_insertion_point(one_of_clear_start:"
"$full_name$)\n");
printer->Indent();
printer->Print(oneof_vars,
"switch ($oneofname$_case()) {\n");
printer->Indent();
for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) {
const FieldDescriptor* field = descriptor_->oneof_decl(i)->field(j);
printer->Print(
"case k$field_name$: {\n",
"field_name", UnderscoresToCamelCase(field->name(), true));
printer->Indent();
// We clear only allocated objects in oneofs
if (!IsStringOrMessage(field)) {
printer->Print(
"// No need to clear\n");
} else {
field_generators_.get(field).GenerateClearingCode(printer);
}
printer->Print(
"break;\n");
printer->Outdent();
printer->Print(
"}\n");
}
printer->Print(
"case $cap_oneof_name$_NOT_SET: {\n"
" break;\n"
"}\n",
"cap_oneof_name",
ToUpper(descriptor_->oneof_decl(i)->name()));
printer->Outdent();
printer->Print(
"}\n"
"_oneof_case_[$oneof_index$] = $cap_oneof_name$_NOT_SET;\n",
"oneof_index", SimpleItoa(i),
"cap_oneof_name",
ToUpper(descriptor_->oneof_decl(i)->name()));
printer->Outdent();
printer->Print(
"}\n"
"\n");
}
}
void MessageGenerator::
GenerateSwap(io::Printer* printer) {
if (SupportsArenas(descriptor_)) {
// Generate the Swap member function. This is a lightweight wrapper around
// UnsafeArenaSwap() / MergeFrom() with temporaries, depending on the memory
// ownership situation: swapping across arenas or between an arena and a
// heap requires copying.
printer->Print(
"void $classname$::Swap($classname$* other) {\n"
" if (other == this) return;\n"
" if (GetArenaNoVirtual() == other->GetArenaNoVirtual()) {\n"
" InternalSwap(other);\n"
" } else {\n"
" $classname$* temp = New(GetArenaNoVirtual());\n"
" temp->MergeFrom(*other);\n"
" other->CopyFrom(*this);\n"
" InternalSwap(temp);\n"
" if (GetArenaNoVirtual() == NULL) {\n"
" delete temp;\n"
" }\n"
" }\n"
"}\n"
"void $classname$::UnsafeArenaSwap($classname$* other) {\n"
" if (other == this) return;\n"
" GOOGLE_DCHECK(GetArenaNoVirtual() == other->GetArenaNoVirtual());\n"
" InternalSwap(other);\n"
"}\n",
"classname", classname_);
} else {
printer->Print(
"void $classname$::Swap($classname$* other) {\n"
" if (other == this) return;\n"
" InternalSwap(other);\n"
"}\n",
"classname", classname_);
}
// Generate the UnsafeArenaSwap member function.
printer->Print("void $classname$::InternalSwap($classname$* other) {\n",
"classname", classname_);
printer->Indent();
printer->Print("using std::swap;\n");
if (HasGeneratedMethods(descriptor_->file(), options_)) {
for (int i = 0; i < optimized_order_.size(); i++) {
// optimized_order_ does not contain oneof fields, but the field
// generators for these fields do not emit swapping code on their own.
const FieldDescriptor* field = optimized_order_[i];
field_generators_.get(field).GenerateSwappingCode(printer);
}
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
printer->Print(
"swap($oneof_name$_, other->$oneof_name$_);\n"
"swap(_oneof_case_[$i$], other->_oneof_case_[$i$]);\n",
"oneof_name", descriptor_->oneof_decl(i)->name(),
"i", SimpleItoa(i));
}
if (HasFieldPresence(descriptor_->file())) {
for (int i = 0; i < HasBitsSize() / 4; ++i) {
printer->Print("swap(_has_bits_[$i$], other->_has_bits_[$i$]);\n",
"i", SimpleItoa(i));
}
}
printer->Print("_internal_metadata_.Swap(&other->_internal_metadata_);\n");
if (descriptor_->extension_range_count() > 0) {
printer->Print("_extensions_.Swap(&other->_extensions_);\n");
}
if (num_weak_fields_) {
printer->Print(
"_weak_field_map_.UnsafeArenaSwap(&other->_weak_field_map_);\n");
}
} else {
printer->Print("GetReflection()->Swap(this, other);");
}
printer->Outdent();
printer->Print("}\n");
}
void MessageGenerator::
GenerateMergeFrom(io::Printer* printer) {
if (HasDescriptorMethods(descriptor_->file(), options_)) {
// Generate the generalized MergeFrom (aka that which takes in the Message
// base class as a parameter).
printer->Print(
"void $classname$::MergeFrom(const ::google::protobuf::Message& from) {\n"
"// @@protoc_insertion_point(generalized_merge_from_start:"
"$full_name$)\n"
" GOOGLE_DCHECK_NE(&from, this);\n",
"classname", classname_, "full_name", descriptor_->full_name());
printer->Indent();
// Cast the message to the proper type. If we find that the message is
// *not* of the proper type, we can still call Merge via the reflection
// system, as the GOOGLE_CHECK above ensured that we have the same descriptor
// for each message.
printer->Print(
"const $classname$* source =\n"
" ::google::protobuf::internal::DynamicCastToGenerated<const $classname$>(\n"
" &from);\n"
"if (source == NULL) {\n"
"// @@protoc_insertion_point(generalized_merge_from_cast_fail:"
"$full_name$)\n"
" ::google::protobuf::internal::ReflectionOps::Merge(from, this);\n"
"} else {\n"
"// @@protoc_insertion_point(generalized_merge_from_cast_success:"
"$full_name$)\n"
" MergeFrom(*source);\n"
"}\n",
"classname", classname_, "full_name", descriptor_->full_name());
printer->Outdent();
printer->Print("}\n\n");
} else {
// Generate CheckTypeAndMergeFrom().
printer->Print(
"void $classname$::CheckTypeAndMergeFrom(\n"
" const ::google::protobuf::MessageLite& from) {\n"
" MergeFrom(*::google::protobuf::down_cast<const $classname$*>(&from));\n"
"}\n"
"\n",
"classname", classname_);
}
// Generate the class-specific MergeFrom, which avoids the GOOGLE_CHECK and cast.
printer->Print(
"void $classname$::MergeFrom(const $classname$& from) {\n"
"// @@protoc_insertion_point(class_specific_merge_from_start:"
"$full_name$)\n"
" GOOGLE_DCHECK_NE(&from, this);\n",
"classname", classname_, "full_name", descriptor_->full_name());
printer->Indent();
if (descriptor_->extension_range_count() > 0) {
printer->Print("_extensions_.MergeFrom(from._extensions_);\n");
}
printer->Print(
"_internal_metadata_.MergeFrom(from._internal_metadata_);\n"
"::google::protobuf::uint32 cached_has_bits = 0;\n"
"(void) cached_has_bits;\n\n");
// cached_has_bit_index maintains that:
// cached_has_bits = from._has_bits_[cached_has_bit_index]
// for cached_has_bit_index >= 0
int cached_has_bit_index = -1;
int last_i = -1;
for (int i = 0; i < optimized_order_.size(); ) {
// Detect infinite loops.
GOOGLE_CHECK_NE(i, last_i);
last_i = i;
// Merge Repeated fields. These fields do not require a
// check as we can simply iterate over them.
for (; i < optimized_order_.size(); i++) {
const FieldDescriptor* field = optimized_order_[i];
if (!field->is_repeated()) {
break;
}
const FieldGenerator& generator = field_generators_.get(field);
generator.GenerateMergingCode(printer);
}
// Merge Optional and Required fields (after a _has_bit_ check).
int last_chunk = -1;
int last_chunk_start = -1;
int last_chunk_end = -1;
uint32 last_chunk_mask = 0;
for (; i < optimized_order_.size(); i++) {
const FieldDescriptor* field = optimized_order_[i];
if (field->is_repeated()) {
break;
}
// "index" defines where in the _has_bits_ the field appears.
// "i" is our loop counter within optimized_order_.
int index = HasFieldPresence(descriptor_->file()) ?
has_bit_indices_[field->index()] : 0;
int chunk = index / 8;
if (last_chunk == -1) {
last_chunk = chunk;
last_chunk_start = i;
} else if (chunk != last_chunk) {
// Emit the fields for this chunk so far.
break;
}
last_chunk_end = i;
last_chunk_mask |= static_cast<uint32>(1) << (index % 32);
}
if (last_chunk != -1) {
GOOGLE_DCHECK_NE(-1, last_chunk_start);
GOOGLE_DCHECK_NE(-1, last_chunk_end);
GOOGLE_DCHECK_NE(0, last_chunk_mask);
const int count = popcnt(last_chunk_mask);
const bool have_outer_if = HasFieldPresence(descriptor_->file()) &&
(last_chunk_start != last_chunk_end);
if (have_outer_if) {
// Check (up to) 8 has_bits at a time if we have more than one field in
// this chunk. Due to field layout ordering, we may check
// _has_bits_[last_chunk * 8 / 32] multiple times.
GOOGLE_DCHECK_LE(2, count);
GOOGLE_DCHECK_GE(8, count);
if (cached_has_bit_index != last_chunk / 4) {
int new_index = last_chunk / 4;
printer->Print("cached_has_bits = from._has_bits_[$new_index$];\n",
"new_index", SimpleItoa(new_index));
cached_has_bit_index = new_index;
}
printer->Print(
"if (cached_has_bits & $mask$u) {\n",
"mask", SimpleItoa(last_chunk_mask));
printer->Indent();
}
// Go back and emit clears for each of the fields we processed.
bool deferred_has_bit_changes = false;
for (int j = last_chunk_start; j <= last_chunk_end; j++) {
const FieldDescriptor* field = optimized_order_[j];
const FieldGenerator& generator = field_generators_.get(field);
bool have_enclosing_if = false;
if (HasFieldPresence(descriptor_->file())) {
// Attempt to use the state of cached_has_bits, if possible.
int has_bit_index = has_bit_indices_[field->index()];
if (!field->options().weak() &&
cached_has_bit_index == has_bit_index / 32) {
const string mask = StrCat(
strings::Hex(1u << (has_bit_index % 32),
strings::ZERO_PAD_8));
printer->Print(
"if (cached_has_bits & 0x$mask$u) {\n", "mask", mask);
} else {
printer->Print(
"if (from.has_$name$()) {\n",
"name", FieldName(field));
}
printer->Indent();
have_enclosing_if = true;
} else {
// Merge semantics without true field presence: primitive fields are
// merged only if non-zero (numeric) or non-empty (string).
have_enclosing_if = EmitFieldNonDefaultCondition(
printer, "from.", field);
}
if (have_outer_if && IsPOD(field)) {
// GenerateCopyConstructorCode for enum and primitive scalar fields
// does not do _has_bits_ modifications. We defer _has_bits_
// manipulation until the end of the outer if.
//
// This can reduce the number of loads/stores by up to 7 per 8 fields.
deferred_has_bit_changes = true;
generator.GenerateCopyConstructorCode(printer);
} else {
generator.GenerateMergingCode(printer);
}
if (have_enclosing_if) {
printer->Outdent();
printer->Print("}\n");
}
}
if (have_outer_if) {
if (deferred_has_bit_changes) {
// Flush the has bits for the primitives we deferred.
GOOGLE_CHECK_LE(0, cached_has_bit_index);
printer->Print(
"_has_bits_[$index$] |= cached_has_bits;\n",
"index", SimpleItoa(cached_has_bit_index));
}
printer->Outdent();
printer->Print("}\n");
}
}
}
// Merge oneof fields. Oneof field requires oneof case check.
for (int i = 0; i < descriptor_->oneof_decl_count(); ++i) {
printer->Print(
"switch (from.$oneofname$_case()) {\n",
"oneofname", descriptor_->oneof_decl(i)->name());
printer->Indent();
for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) {
const FieldDescriptor* field = descriptor_->oneof_decl(i)->field(j);
printer->Print(
"case k$field_name$: {\n",
"field_name", UnderscoresToCamelCase(field->name(), true));
printer->Indent();
field_generators_.get(field).GenerateMergingCode(printer);
printer->Print(
"break;\n");
printer->Outdent();
printer->Print(
"}\n");
}
printer->Print(
"case $cap_oneof_name$_NOT_SET: {\n"
" break;\n"
"}\n",
"cap_oneof_name",
ToUpper(descriptor_->oneof_decl(i)->name()));
printer->Outdent();
printer->Print(
"}\n");
}
if (num_weak_fields_) {
printer->Print("_weak_field_map_.MergeFrom(from._weak_field_map_);\n");
}
printer->Outdent();
printer->Print("}\n");
}
void MessageGenerator::
GenerateCopyFrom(io::Printer* printer) {
if (HasDescriptorMethods(descriptor_->file(), options_)) {
// Generate the generalized CopyFrom (aka that which takes in the Message
// base class as a parameter).
printer->Print(
"void $classname$::CopyFrom(const ::google::protobuf::Message& from) {\n"
"// @@protoc_insertion_point(generalized_copy_from_start:"
"$full_name$)\n",
"classname", classname_, "full_name", descriptor_->full_name());
printer->Indent();
printer->Print(
"if (&from == this) return;\n"
"Clear();\n"
"MergeFrom(from);\n");
printer->Outdent();
printer->Print("}\n\n");
}
// Generate the class-specific CopyFrom.
printer->Print(
"void $classname$::CopyFrom(const $classname$& from) {\n"
"// @@protoc_insertion_point(class_specific_copy_from_start:"
"$full_name$)\n",
"classname", classname_, "full_name", descriptor_->full_name());
printer->Indent();
printer->Print(
"if (&from == this) return;\n"
"Clear();\n"
"MergeFrom(from);\n");
printer->Outdent();
printer->Print("}\n");
}
void MessageGenerator::
GenerateMergeFromCodedStream(io::Printer* printer) {
std::map<string, string> vars;
SetUnknkownFieldsVariable(descriptor_, options_, &vars);
if (descriptor_->options().message_set_wire_format()) {
// Special-case MessageSet.
vars["classname"] = classname_;
printer->Print(vars,
"bool $classname$::MergePartialFromCodedStream(\n"
" ::google::protobuf::io::CodedInputStream* input) {\n"
" return _extensions_.ParseMessageSet(input,\n"
" internal_default_instance(), $mutable_unknown_fields$);\n"
"}\n");
return;
}
std::vector<const FieldDescriptor*> ordered_fields =
SortFieldsByNumber(descriptor_);
printer->Print(
"bool $classname$::MergePartialFromCodedStream(\n"
" ::google::protobuf::io::CodedInputStream* input) {\n",
"classname", classname_);
if (table_driven_) {
printer->Indent();
const string lite = UseUnknownFieldSet(descriptor_->file(), options_) ?
"" : "Lite";
printer->Print(
"return ::google::protobuf::internal::MergePartialFromCodedStream$lite$(\n"
" this,\n"
" ::$file_namespace$::TableStruct::schema[\n"
" $classname$::kIndexInFileMessages],\n"
" input);\n",
"classname", classname_, "file_namespace",
FileLevelNamespace(descriptor_), "lite", lite);
printer->Outdent();
printer->Print("}\n");
return;
}
if (SupportsArenas(descriptor_)) {
for (int i = 0; i < ordered_fields.size(); i++) {
const FieldDescriptor* field = ordered_fields[i];
const FieldGenerator& field_generator = field_generators_.get(field);
if (field_generator.MergeFromCodedStreamNeedsArena()) {
printer->Print(
" ::google::protobuf::Arena* arena = GetArenaNoVirtual();\n");
break;
}
}
}
printer->Print(
"#define DO_(EXPRESSION) if (!GOOGLE_PREDICT_TRUE(EXPRESSION)) goto "
"failure\n"
" ::google::protobuf::uint32 tag;\n");
if (!UseUnknownFieldSet(descriptor_->file(), options_)) {
printer->Print(
" ::google::protobuf::internal::LiteUnknownFieldSetter unknown_fields_setter(\n"
" &_internal_metadata_);\n"
" ::google::protobuf::io::StringOutputStream unknown_fields_output(\n"
" unknown_fields_setter.buffer());\n"
" ::google::protobuf::io::CodedOutputStream unknown_fields_stream(\n"
" &unknown_fields_output, false);\n",
"classname", classname_);
}
printer->Print(
" // @@protoc_insertion_point(parse_start:$full_name$)\n",
"full_name", descriptor_->full_name());
printer->Indent();
printer->Print("for (;;) {\n");
printer->Indent();
// To calculate the maximum tag to expect, we look at the highest-numbered
// field. We need to be prepared to handle more than one wire type if that
// field is a packable repeated field, so to simplify things we assume the
// highest possible wire type of 5.
uint32 maxtag =
ordered_fields.empty() ? 0 : ordered_fields.back()->number() * 8 + 5;
const int kCutoff0 = 127; // fits in 1-byte varint
const int kCutoff1 = (127 << 7) + 127; // fits in 2-byte varint
// We need to capture the last tag when parsing if this is a Group type, as
// our caller will verify (via CodedInputStream::LastTagWas) that the correct
// closing tag was received.
bool capture_last_tag = false;
const Descriptor* parent = descriptor_->containing_type();
if (parent) {
for (int i = 0; i < parent->field_count(); i++) {
const FieldDescriptor* field = parent->field(i);
if (field->type() == FieldDescriptor::TYPE_GROUP &&
field->message_type() == descriptor_) {
capture_last_tag = true;
break;
}
}
for (int i = 0; i < parent->extension_count(); i++) {
const FieldDescriptor* field = parent->extension(i);
if (field->type() == FieldDescriptor::TYPE_GROUP &&
field->message_type() == descriptor_) {
capture_last_tag = true;
break;
}
}
}
for (int i = 0; i < descriptor_->file()->extension_count(); i++) {
const FieldDescriptor* field = descriptor_->file()->extension(i);
if (field->type() == FieldDescriptor::TYPE_GROUP &&
field->message_type() == descriptor_) {
capture_last_tag = true;
break;
}
}
printer->Print("::std::pair<::google::protobuf::uint32, bool> p = "
"input->ReadTagWithCutoffNoLastTag($max$u);\n"
"tag = p.first;\n"
"if (!p.second) goto handle_unusual;\n",
"max", SimpleItoa(maxtag <= kCutoff0 ? kCutoff0 :
(maxtag <= kCutoff1 ? kCutoff1 :
maxtag)));
if (descriptor_->field_count() > 0) {
// We don't even want to print the switch() if we have no fields because
// MSVC dislikes switch() statements that contain only a default value.
// Note: If we just switched on the tag rather than the field number, we
// could avoid the need for the if() to check the wire type at the beginning
// of each case. However, this is actually a bit slower in practice as it
// creates a jump table that is 8x larger and sparser, and meanwhile the
// if()s are highly predictable.
//
// Historically, we inserted checks to peek at the next tag on the wire and
// jump directly to the next case statement. While this avoids the jump
// table that the switch uses, it greatly increases code size (20-60%) and
// inserts branches that may fail (especially for real world protos that
// interleave--in field number order--hot and cold fields). Loadtests
// confirmed that removing this optimization is performance neutral.
printer->Print("switch (::google::protobuf::internal::WireFormatLite::"
"GetTagFieldNumber(tag)) {\n");
printer->Indent();
for (int i = 0; i < ordered_fields.size(); i++) {
const FieldDescriptor* field = ordered_fields[i];
PrintFieldComment(printer, field);
printer->Print(
"case $number$: {\n",
"number", SimpleItoa(field->number()));
printer->Indent();
const FieldGenerator& field_generator = field_generators_.get(field);
// Emit code to parse the common, expected case.
printer->Print(
"if (static_cast< ::google::protobuf::uint8>(tag) ==\n"
" static_cast< ::google::protobuf::uint8>($truncated$u /* $full$ & 0xFF */)) {\n",
"truncated", SimpleItoa(WireFormat::MakeTag(field) & 0xFF),
"full", SimpleItoa(WireFormat::MakeTag(field)));
printer->Indent();
if (field->is_packed()) {
field_generator.GenerateMergeFromCodedStreamWithPacking(printer);
} else {
field_generator.GenerateMergeFromCodedStream(printer);
}
printer->Outdent();
// Emit code to parse unexpectedly packed or unpacked values.
if (field->is_packed()) {
internal::WireFormatLite::WireType wiretype =
WireFormat::WireTypeForFieldType(field->type());
const uint32 tag = internal::WireFormatLite::MakeTag(
field->number(), wiretype);
printer->Print(
"} else if (\n"
" static_cast< ::google::protobuf::uint8>(tag) ==\n"
" static_cast< ::google::protobuf::uint8>($truncated$u /* $full$ & 0xFF */)) {\n",
"truncated", SimpleItoa(tag & 0xFF),
"full", SimpleItoa(tag));
printer->Indent();
field_generator.GenerateMergeFromCodedStream(printer);
printer->Outdent();
} else if (field->is_packable() && !field->is_packed()) {
internal::WireFormatLite::WireType wiretype =
internal::WireFormatLite::WIRETYPE_LENGTH_DELIMITED;
const uint32 tag = internal::WireFormatLite::MakeTag(
field->number(), wiretype);
printer->Print(
"} else if (\n"
" static_cast< ::google::protobuf::uint8>(tag) ==\n"
" static_cast< ::google::protobuf::uint8>($truncated$u /* $full$ & 0xFF */)) {\n",
"truncated", SimpleItoa(tag & 0xFF),
"full", SimpleItoa(tag));
printer->Indent();
field_generator.GenerateMergeFromCodedStreamWithPacking(printer);
printer->Outdent();
}
printer->Print(
"} else {\n"
" goto handle_unusual;\n"
"}\n");
printer->Print(
"break;\n");
printer->Outdent();
printer->Print("}\n\n");
}
printer->Print("default: {\n");
printer->Indent();
}
printer->Outdent();
printer->Print("handle_unusual:\n");
printer->Indent();
// If tag is 0 or an end-group tag then this must be the end of the message.
if (capture_last_tag) {
printer->Print(
"if (tag == 0 ||\n"
" ::google::protobuf::internal::WireFormatLite::GetTagWireType(tag) ==\n"
" ::google::protobuf::internal::WireFormatLite::WIRETYPE_END_GROUP) {\n"
" input->SetLastTag(tag);\n"
" goto success;\n"
"}\n");
} else {
printer->Print(
"if (tag == 0) {\n"
" goto success;\n"
"}\n");
}
// Handle extension ranges.
if (descriptor_->extension_range_count() > 0) {
printer->Print(
"if (");
for (int i = 0; i < descriptor_->extension_range_count(); i++) {
const Descriptor::ExtensionRange* range =
descriptor_->extension_range(i);
if (i > 0) printer->Print(" ||\n ");
uint32 start_tag = WireFormatLite::MakeTag(
range->start, static_cast<WireFormatLite::WireType>(0));
uint32 end_tag = WireFormatLite::MakeTag(
range->end, static_cast<WireFormatLite::WireType>(0));
if (range->end > FieldDescriptor::kMaxNumber) {
printer->Print(
"($start$u <= tag)",
"start", SimpleItoa(start_tag));
} else {
printer->Print(
"($start$u <= tag && tag < $end$u)",
"start", SimpleItoa(start_tag),
"end", SimpleItoa(end_tag));
}
}
printer->Print(") {\n");
if (UseUnknownFieldSet(descriptor_->file(), options_)) {
printer->Print(vars,
" DO_(_extensions_.ParseField(tag, input,\n"
" internal_default_instance(),\n"
" $mutable_unknown_fields$));\n");
} else {
printer->Print(
" DO_(_extensions_.ParseField(tag, input,\n"
" internal_default_instance(),\n"
" &unknown_fields_stream));\n");
}
printer->Print(
" continue;\n"
"}\n");
}
// We really don't recognize this tag. Skip it.
if (UseUnknownFieldSet(descriptor_->file(), options_)) {
printer->Print(vars,
"DO_(::google::protobuf::internal::WireFormat::SkipField(\n"
" input, tag, $mutable_unknown_fields$));\n");
} else {
printer->Print(
"DO_(::google::protobuf::internal::WireFormatLite::SkipField(\n"
" input, tag, &unknown_fields_stream));\n");
}
if (descriptor_->field_count() > 0) {
printer->Print("break;\n");
printer->Outdent();
printer->Print("}\n"); // default:
printer->Outdent();
printer->Print("}\n"); // switch
}
printer->Outdent();
printer->Outdent();
printer->Print(
" }\n" // for (;;)
"success:\n"
" // @@protoc_insertion_point(parse_success:$full_name$)\n"
" return true;\n"
"failure:\n"
" // @@protoc_insertion_point(parse_failure:$full_name$)\n"
" return false;\n"
"#undef DO_\n"
"}\n", "full_name", descriptor_->full_name());
}
void MessageGenerator::GenerateSerializeOneofFields(
io::Printer* printer, const std::vector<const FieldDescriptor*>& fields,
bool to_array) {
GOOGLE_CHECK(!fields.empty());
if (fields.size() == 1) {
GenerateSerializeOneField(printer, fields[0], to_array, -1);
return;
}
// We have multiple mutually exclusive choices. Emit a switch statement.
const OneofDescriptor* oneof = fields[0]->containing_oneof();
printer->Print(
"switch ($oneofname$_case()) {\n",
"oneofname", oneof->name());
printer->Indent();
for (int i = 0; i < fields.size(); i++) {
const FieldDescriptor* field = fields[i];
printer->Print(
"case k$field_name$:\n",
"field_name", UnderscoresToCamelCase(field->name(), true));
printer->Indent();
if (to_array) {
field_generators_.get(field).GenerateSerializeWithCachedSizesToArray(
printer);
} else {
field_generators_.get(field).GenerateSerializeWithCachedSizes(printer);
}
printer->Print(
"break;\n");
printer->Outdent();
}
printer->Outdent();
// Doing nothing is an option.
printer->Print(
" default: ;\n"
"}\n");
}
void MessageGenerator::GenerateSerializeOneField(
io::Printer* printer, const FieldDescriptor* field, bool to_array,
int cached_has_bits_index) {
if (!field->options().weak()) {
// For weakfields, PrintFieldComment is called during iteration.
PrintFieldComment(printer, field);
}
bool have_enclosing_if = false;
if (field->options().weak()) {
} else if (!field->is_repeated() && HasFieldPresence(descriptor_->file())) {
// Attempt to use the state of cached_has_bits, if possible.
int has_bit_index = has_bit_indices_[field->index()];
if (cached_has_bits_index == has_bit_index / 32) {
const string mask = StrCat(
strings::Hex(1u << (has_bit_index % 32),
strings::ZERO_PAD_8));
printer->Print(
"if (cached_has_bits & 0x$mask$u) {\n", "mask", mask);
} else {
printer->Print(
"if (has_$name$()) {\n",
"name", FieldName(field));
}
printer->Indent();
have_enclosing_if = true;
} else if (!HasFieldPresence(descriptor_->file())) {
have_enclosing_if = EmitFieldNonDefaultCondition(printer, "this->", field);
}
if (to_array) {
field_generators_.get(field).GenerateSerializeWithCachedSizesToArray(
printer);
} else {
field_generators_.get(field).GenerateSerializeWithCachedSizes(printer);
}
if (have_enclosing_if) {
printer->Outdent();
printer->Print("}\n");
}
printer->Print("\n");
}
void MessageGenerator::GenerateSerializeOneExtensionRange(
io::Printer* printer, const Descriptor::ExtensionRange* range,
bool to_array) {
std::map<string, string> vars;
vars["start"] = SimpleItoa(range->start);
vars["end"] = SimpleItoa(range->end);
printer->Print(vars,
"// Extension range [$start$, $end$)\n");
if (to_array) {
printer->Print(vars,
"target = _extensions_.InternalSerializeWithCachedSizesToArray(\n"
" $start$, $end$, deterministic, target);\n\n");
} else {
printer->Print(vars,
"_extensions_.SerializeWithCachedSizes(\n"
" $start$, $end$, output);\n\n");
}
}
void MessageGenerator::
GenerateSerializeWithCachedSizes(io::Printer* printer) {
if (descriptor_->options().message_set_wire_format()) {
// Special-case MessageSet.
printer->Print(
"void $classname$::SerializeWithCachedSizes(\n"
" ::google::protobuf::io::CodedOutputStream* output) const {\n"
" _extensions_.SerializeMessageSetWithCachedSizes(output);\n",
"classname", classname_);
GOOGLE_CHECK(UseUnknownFieldSet(descriptor_->file(), options_));
std::map<string, string> vars;
SetUnknkownFieldsVariable(descriptor_, options_, &vars);
printer->Print(vars,
" ::google::protobuf::internal::WireFormat::SerializeUnknownMessageSetItems(\n"
" $unknown_fields$, output);\n");
printer->Print(
"}\n");
return;
}
if (options_.table_driven_serialization) return;
printer->Print(
"void $classname$::SerializeWithCachedSizes(\n"
" ::google::protobuf::io::CodedOutputStream* output) const {\n",
"classname", classname_);
printer->Indent();
printer->Print(
"// @@protoc_insertion_point(serialize_start:$full_name$)\n",
"full_name", descriptor_->full_name());
GenerateSerializeWithCachedSizesBody(printer, false);
printer->Print(
"// @@protoc_insertion_point(serialize_end:$full_name$)\n",
"full_name", descriptor_->full_name());
printer->Outdent();
printer->Print(
"}\n");
}
void MessageGenerator::
GenerateSerializeWithCachedSizesToArray(io::Printer* printer) {
if (descriptor_->options().message_set_wire_format()) {
// Special-case MessageSet.
printer->Print(
"::google::protobuf::uint8* $classname$::InternalSerializeWithCachedSizesToArray(\n"
" bool deterministic, ::google::protobuf::uint8* target) const {\n"
" target = _extensions_."
"InternalSerializeMessageSetWithCachedSizesToArray(\n"
" deterministic, target);\n",
"classname", classname_);
GOOGLE_CHECK(UseUnknownFieldSet(descriptor_->file(), options_));
std::map<string, string> vars;
SetUnknkownFieldsVariable(descriptor_, options_, &vars);
printer->Print(vars,
" target = ::google::protobuf::internal::WireFormat::\n"
" SerializeUnknownMessageSetItemsToArray(\n"
" $unknown_fields$, target);\n");
printer->Print(
" return target;\n"
"}\n");
return;
}
printer->Print(
"::google::protobuf::uint8* $classname$::InternalSerializeWithCachedSizesToArray(\n"
" bool deterministic, ::google::protobuf::uint8* target) const {\n",
"classname", classname_);
printer->Indent();
printer->Print("(void)deterministic; // Unused\n");
printer->Print(
"// @@protoc_insertion_point(serialize_to_array_start:$full_name$)\n",
"full_name", descriptor_->full_name());
GenerateSerializeWithCachedSizesBody(printer, true);
printer->Print(
"// @@protoc_insertion_point(serialize_to_array_end:$full_name$)\n",
"full_name", descriptor_->full_name());
printer->Outdent();
printer->Print(
" return target;\n"
"}\n");
}
void MessageGenerator::
GenerateSerializeWithCachedSizesBody(io::Printer* printer, bool to_array) {
// If there are multiple fields in a row from the same oneof then we
// coalesce them and emit a switch statement. This is more efficient
// because it lets the C++ compiler know this is a "at most one can happen"
// situation. If we emitted "if (has_x()) ...; if (has_y()) ..." the C++
// compiler's emitted code might check has_y() even when has_x() is true.
class LazySerializerEmitter {
public:
LazySerializerEmitter(MessageGenerator* mg, io::Printer* printer,
bool to_array)
: mg_(mg),
printer_(printer),
to_array_(to_array),
eager_(!HasFieldPresence(mg->descriptor_->file())),
cached_has_bit_index_(-1) {}
~LazySerializerEmitter() { Flush(); }
// If conditions allow, try to accumulate a run of fields from the same
// oneof, and handle them at the next Flush().
void Emit(const FieldDescriptor* field) {
if (eager_ || MustFlush(field)) {
Flush();
}
if (field->containing_oneof() == NULL) {
// TODO(ckennelly): Defer non-oneof fields similarly to oneof fields.
if (!field->options().weak() && !field->is_repeated() && !eager_) {
// We speculatively load the entire _has_bits_[index] contents, even
// if it is for only one field. Deferring non-oneof emitting would
// allow us to determine whether this is going to be useful.
int has_bit_index = mg_->has_bit_indices_[field->index()];
if (cached_has_bit_index_ != has_bit_index / 32) {
// Reload.
int new_index = has_bit_index / 32;
printer_->Print(
"cached_has_bits = _has_bits_[$new_index$];\n",
"new_index", SimpleItoa(new_index));
cached_has_bit_index_ = new_index;
}
}
mg_->GenerateSerializeOneField(
printer_, field, to_array_, cached_has_bit_index_);
} else {
v_.push_back(field);
}
}
void Flush() {
if (!v_.empty()) {
mg_->GenerateSerializeOneofFields(printer_, v_, to_array_);
v_.clear();
}
}
private:
// If we have multiple fields in v_ then they all must be from the same
// oneof. Would adding field to v_ break that invariant?
bool MustFlush(const FieldDescriptor* field) {
return !v_.empty() &&
v_[0]->containing_oneof() != field->containing_oneof();
}
MessageGenerator* mg_;
io::Printer* printer_;
const bool to_array_;
const bool eager_;
std::vector<const FieldDescriptor*> v_;
// cached_has_bit_index_ maintains that:
// cached_has_bits = from._has_bits_[cached_has_bit_index_]
// for cached_has_bit_index_ >= 0
int cached_has_bit_index_;
};
std::vector<const FieldDescriptor*> ordered_fields =
SortFieldsByNumber(descriptor_);
std::vector<const Descriptor::ExtensionRange*> sorted_extensions;
for (int i = 0; i < descriptor_->extension_range_count(); ++i) {
sorted_extensions.push_back(descriptor_->extension_range(i));
}
std::sort(sorted_extensions.begin(), sorted_extensions.end(),
ExtensionRangeSorter());
if (num_weak_fields_) {
printer->Print(
"::google::protobuf::internal::WeakFieldMap::FieldWriter field_writer("
"_weak_field_map_);\n");
}
printer->Print(
"::google::protobuf::uint32 cached_has_bits = 0;\n"
"(void) cached_has_bits;\n\n");
// Merge the fields and the extension ranges, both sorted by field number.
{
LazySerializerEmitter e(this, printer, to_array);
const FieldDescriptor* last_weak_field = nullptr;
int i, j;
for (i = 0, j = 0;
i < ordered_fields.size() || j < sorted_extensions.size();) {
if ((j == sorted_extensions.size()) ||
(i < descriptor_->field_count() &&
ordered_fields[i]->number() < sorted_extensions[j]->start)) {
const FieldDescriptor* field = ordered_fields[i++];
if (field->options().weak()) {
last_weak_field = field;
PrintFieldComment(printer, field);
} else {
if (last_weak_field != nullptr) {
e.Emit(last_weak_field);
last_weak_field = nullptr;
}
e.Emit(field);
}
} else {
if (last_weak_field != nullptr) {
e.Emit(last_weak_field);
last_weak_field = nullptr;
}
e.Flush();
GenerateSerializeOneExtensionRange(printer,
sorted_extensions[j++],
to_array);
}
}
if (last_weak_field != nullptr) {
e.Emit(last_weak_field);
}
}
std::map<string, string> vars;
SetUnknkownFieldsVariable(descriptor_, options_, &vars);
if (UseUnknownFieldSet(descriptor_->file(), options_)) {
printer->Print(vars,
"if ($have_unknown_fields$) {\n");
printer->Indent();
if (to_array) {
printer->Print(vars,
"target = "
"::google::protobuf::internal::WireFormat::SerializeUnknownFieldsToArray(\n"
" $unknown_fields$, target);\n");
} else {
printer->Print(vars,
"::google::protobuf::internal::WireFormat::SerializeUnknownFields(\n"
" $unknown_fields$, output);\n");
}
printer->Outdent();
printer->Print("}\n");
} else {
printer->Print(vars,
"output->WriteRaw($unknown_fields$.data(),\n"
" static_cast<int>($unknown_fields$.size()));\n");
}
}
std::vector<uint32> MessageGenerator::RequiredFieldsBitMask() const {
const int array_size = HasBitsSize();
std::vector<uint32> masks(array_size, 0);
for (int i = 0; i < descriptor_->field_count(); i++) {
const FieldDescriptor* field = descriptor_->field(i);
if (!field->is_required()) {
continue;
}
const int has_bit_index = has_bit_indices_[field->index()];
masks[has_bit_index / 32] |=
static_cast<uint32>(1) << (has_bit_index % 32);
}
return masks;
}
// Create an expression that evaluates to
// "for all i, (_has_bits_[i] & masks[i]) == masks[i]"
// masks is allowed to be shorter than _has_bits_, but at least one element of
// masks must be non-zero.
static string ConditionalToCheckBitmasks(const std::vector<uint32>& masks) {
std::vector<string> parts;
for (int i = 0; i < masks.size(); i++) {
if (masks[i] == 0) continue;
string m = StrCat("0x", strings::Hex(masks[i], strings::ZERO_PAD_8));
// Each xor evaluates to 0 if the expected bits are present.
parts.push_back(StrCat("((_has_bits_[", i, "] & ", m, ") ^ ", m, ")"));
}
GOOGLE_CHECK(!parts.empty());
// If we have multiple parts, each expected to be 0, then bitwise-or them.
string result = parts.size() == 1
? parts[0]
: StrCat("(", Join(parts, "\n | "), ")");
return result + " == 0";
}
void MessageGenerator::
GenerateByteSize(io::Printer* printer) {
if (descriptor_->options().message_set_wire_format()) {
// Special-case MessageSet.
GOOGLE_CHECK(UseUnknownFieldSet(descriptor_->file(), options_));
std::map<string, string> vars;
SetUnknkownFieldsVariable(descriptor_, options_, &vars);
vars["classname"] = classname_;
vars["full_name"] = descriptor_->full_name();
printer->Print(
vars,
"size_t $classname$::ByteSizeLong() const {\n"
"// @@protoc_insertion_point(message_set_byte_size_start:$full_name$)\n"
" size_t total_size = _extensions_.MessageSetByteSize();\n"
" if ($have_unknown_fields$) {\n"
" total_size += ::google::protobuf::internal::WireFormat::\n"
" ComputeUnknownMessageSetItemsSize($unknown_fields$);\n"
" }\n"
" int cached_size = ::google::protobuf::internal::ToCachedSize(total_size);\n"
" SetCachedSize(cached_size);\n"
" return total_size;\n"
"}\n");
return;
}
if (num_required_fields_ > 1 && HasFieldPresence(descriptor_->file())) {
// Emit a function (rarely used, we hope) that handles the required fields
// by checking for each one individually.
printer->Print(
"size_t $classname$::RequiredFieldsByteSizeFallback() const {\n"
"// @@protoc_insertion_point(required_fields_byte_size_fallback_start:"
"$full_name$)\n",
"classname", classname_, "full_name", descriptor_->full_name());
printer->Indent();
printer->Print("size_t total_size = 0;\n");
for (int i = 0; i < optimized_order_.size(); i++) {
const FieldDescriptor* field = optimized_order_[i];
if (field->is_required()) {
printer->Print("\n"
"if (has_$name$()) {\n",
"name", FieldName(field));
printer->Indent();
PrintFieldComment(printer, field);
field_generators_.get(field).GenerateByteSize(printer);
printer->Outdent();
printer->Print("}\n");
}
}
printer->Print("\n"
"return total_size;\n");
printer->Outdent();
printer->Print("}\n");
}
printer->Print(
"size_t $classname$::ByteSizeLong() const {\n"
"// @@protoc_insertion_point(message_byte_size_start:$full_name$)\n",
"classname", classname_, "full_name", descriptor_->full_name());
printer->Indent();
printer->Print(
"size_t total_size = 0;\n"
"\n");
if (descriptor_->extension_range_count() > 0) {
printer->Print(
"total_size += _extensions_.ByteSize();\n"
"\n");
}
std::map<string, string> vars;
SetUnknkownFieldsVariable(descriptor_, options_, &vars);
if (UseUnknownFieldSet(descriptor_->file(), options_)) {
printer->Print(vars,
"if ($have_unknown_fields$) {\n"
" total_size +=\n"
" ::google::protobuf::internal::WireFormat::ComputeUnknownFieldsSize(\n"
" $unknown_fields$);\n"
"}\n");
} else {
printer->Print(vars,
"total_size += $unknown_fields$.size();\n"
"\n");
}
// Handle required fields (if any). We expect all of them to be
// present, so emit one conditional that checks for that. If they are all
// present then the fast path executes; otherwise the slow path executes.
if (num_required_fields_ > 1 && HasFieldPresence(descriptor_->file())) {
// The fast path works if all required fields are present.
const std::vector<uint32> masks_for_has_bits = RequiredFieldsBitMask();
printer->Print((string("if (") +
ConditionalToCheckBitmasks(masks_for_has_bits) +
") { // All required fields are present.\n").c_str());
printer->Indent();
// Oneof fields cannot be required, so optimized_order_ contains all of the
// fields that we need to potentially emit.
for (int i = 0; i < optimized_order_.size(); i++) {
const FieldDescriptor* field = optimized_order_[i];
if (!field->is_required()) continue;
PrintFieldComment(printer, field);
field_generators_.get(field).GenerateByteSize(printer);
printer->Print("\n");
}
printer->Outdent();
printer->Print("} else {\n" // the slow path
" total_size += RequiredFieldsByteSizeFallback();\n"
"}\n");
} else {
// num_required_fields_ <= 1: no need to be tricky
for (int i = 0; i < optimized_order_.size(); i++) {
const FieldDescriptor* field = optimized_order_[i];
if (!field->is_required()) continue;
PrintFieldComment(printer, field);
printer->Print("if (has_$name$()) {\n",
"name", FieldName(field));
printer->Indent();
field_generators_.get(field).GenerateByteSize(printer);
printer->Outdent();
printer->Print("}\n");
}
}
std::vector<std::vector<const FieldDescriptor*> > chunks = CollectFields(
optimized_order_,
MatchRepeatedAndHasByteAndRequired(
&has_bit_indices_, HasFieldPresence(descriptor_->file())));
// Remove chunks with required fields.
chunks.erase(std::remove_if(chunks.begin(), chunks.end(), IsRequired),
chunks.end());
for (int chunk_index = 0; chunk_index < chunks.size(); chunk_index++) {
const std::vector<const FieldDescriptor*>& chunk = chunks[chunk_index];
GOOGLE_CHECK(!chunk.empty());
// Handle repeated fields.
if (chunk.front()->is_repeated()) {
for (int i = 0; i < chunk.size(); i++) {
const FieldDescriptor* field = chunk[i];
PrintFieldComment(printer, field);
const FieldGenerator& generator = field_generators_.get(field);
generator.GenerateByteSize(printer);
printer->Print("\n");
}
continue;
}
// Handle optional (non-repeated/oneof) fields.
//
// These are handled in chunks of 8. The first chunk is
// the non-requireds-non-repeateds-non-unions-non-extensions in
// descriptor_->field(0), descriptor_->field(1), ... descriptor_->field(7),
// and the second chunk is the same for
// descriptor_->field(8), descriptor_->field(9), ...
// descriptor_->field(15),
// etc.
int last_chunk = HasFieldPresence(descriptor_->file())
? has_bit_indices_[chunk.front()->index()] / 8
: 0;
GOOGLE_DCHECK_NE(-1, last_chunk);
const bool have_outer_if =
HasFieldPresence(descriptor_->file()) && chunk.size() > 1;
if (have_outer_if) {
uint32 last_chunk_mask = GenChunkMask(chunk, has_bit_indices_);
const int count = popcnt(last_chunk_mask);
// Check (up to) 8 has_bits at a time if we have more than one field in
// this chunk. Due to field layout ordering, we may check
// _has_bits_[last_chunk * 8 / 32] multiple times.
GOOGLE_DCHECK_LE(2, count);
GOOGLE_DCHECK_GE(8, count);
printer->Print("if (_has_bits_[$index$ / 32] & $mask$u) {\n", "index",
SimpleItoa(last_chunk * 8), "mask",
SimpleItoa(last_chunk_mask));
printer->Indent();
}
// Go back and emit checks for each of the fields we processed.
for (int j = 0; j < chunk.size(); j++) {
const FieldDescriptor* field = chunk[j];
const FieldGenerator& generator = field_generators_.get(field);
PrintFieldComment(printer, field);
bool have_enclosing_if = false;
if (HasFieldPresence(descriptor_->file())) {
printer->Print("if (has_$name$()) {\n", "name", FieldName(field));
printer->Indent();
have_enclosing_if = true;
} else {
// Without field presence: field is serialized only if it has a
// non-default value.
have_enclosing_if =
EmitFieldNonDefaultCondition(printer, "this->", field);
}
generator.GenerateByteSize(printer);
if (have_enclosing_if) {
printer->Outdent();
printer->Print(
"}\n"
"\n");
}
}
if (have_outer_if) {
printer->Outdent();
printer->Print("}\n");
}
}
// Fields inside a oneof don't use _has_bits_ so we count them in a separate
// pass.
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
printer->Print(
"switch ($oneofname$_case()) {\n",
"oneofname", descriptor_->oneof_decl(i)->name());
printer->Indent();
for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) {
const FieldDescriptor* field = descriptor_->oneof_decl(i)->field(j);
PrintFieldComment(printer, field);
printer->Print(
"case k$field_name$: {\n",
"field_name", UnderscoresToCamelCase(field->name(), true));
printer->Indent();
field_generators_.get(field).GenerateByteSize(printer);
printer->Print(
"break;\n");
printer->Outdent();
printer->Print(
"}\n");
}
printer->Print(
"case $cap_oneof_name$_NOT_SET: {\n"
" break;\n"
"}\n",
"cap_oneof_name",
ToUpper(descriptor_->oneof_decl(i)->name()));
printer->Outdent();
printer->Print(
"}\n");
}
if (num_weak_fields_) {
// TagSize + MessageSize
printer->Print("total_size += _weak_field_map_.ByteSizeLong();\n");
}
// We update _cached_size_ even though this is a const method. Because
// const methods might be called concurrently this needs to be atomic
// operations or the program is undefined. In practice, since any concurrent
// writes will be writing the exact same value, normal writes will work on
// all common processors. We use a dedicated wrapper class to abstract away
// the underlying atomic. This makes it easier on platforms where even relaxed
// memory order might have perf impact to replace it with ordinary loads and
// stores.
printer->Print(
"int cached_size = ::google::protobuf::internal::ToCachedSize(total_size);\n"
"SetCachedSize(cached_size);\n"
"return total_size;\n");
printer->Outdent();
printer->Print("}\n");
}
void MessageGenerator::
GenerateIsInitialized(io::Printer* printer) {
printer->Print(
"bool $classname$::IsInitialized() const {\n",
"classname", classname_);
printer->Indent();
if (descriptor_->extension_range_count() > 0) {
printer->Print(
"if (!_extensions_.IsInitialized()) {\n"
" return false;\n"
"}\n\n");
}
if (HasFieldPresence(descriptor_->file())) {
// Check that all required fields in this message are set. We can do this
// most efficiently by checking 32 "has bits" at a time.
const std::vector<uint32> masks = RequiredFieldsBitMask();
for (int i = 0; i < masks.size(); i++) {
uint32 mask = masks[i];
if (mask == 0) {
continue;
}
// TODO(ckennelly): Consider doing something similar to ByteSizeLong(),
// where we check all of the required fields in a single branch (assuming
// that we aren't going to benefit from early termination).
printer->Print(
"if ((_has_bits_[$i$] & 0x$mask$) != 0x$mask$) return false;\n",
"i", SimpleItoa(i),
"mask", StrCat(strings::Hex(mask, strings::ZERO_PAD_8)));
}
}
// Now check that all non-oneof embedded messages are initialized.
for (int i = 0; i < optimized_order_.size(); i++) {
const FieldDescriptor* field = optimized_order_[i];
// TODO(ckennelly): Push this down into a generator?
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
!ShouldIgnoreRequiredFieldCheck(field, options_) &&
scc_analyzer_->HasRequiredFields(field->message_type())) {
if (field->is_repeated()) {
if (IsImplicitWeakField(field, options_, scc_analyzer_)) {
printer->Print(
"if (!::google::protobuf::internal::AllAreInitializedWeak(this->$name$_))"
" return false;\n",
"name", FieldName(field));
} else {
printer->Print(
"if (!::google::protobuf::internal::AllAreInitialized(this->$name$()))"
" return false;\n",
"name", FieldName(field));
}
} else if (field->options().weak()) {
continue;
} else {
GOOGLE_CHECK(!field->containing_oneof());
printer->Print(
"if (has_$name$()) {\n"
" if (!this->$name$_->IsInitialized()) return false;\n"
"}\n",
"name", FieldName(field));
}
}
}
if (num_weak_fields_) {
// For Weak fields.
printer->Print("if (!_weak_field_map_.IsInitialized()) return false;\n");
}
// Go through the oneof fields, emitting a switch if any might have required
// fields.
for (int i = 0; i < descriptor_->oneof_decl_count(); i++) {
const OneofDescriptor* oneof = descriptor_->oneof_decl(i);
bool has_required_fields = false;
for (int j = 0; j < oneof->field_count(); j++) {
const FieldDescriptor* field = oneof->field(j);
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
!ShouldIgnoreRequiredFieldCheck(field, options_) &&
scc_analyzer_->HasRequiredFields(field->message_type())) {
has_required_fields = true;
break;
}
}
if (!has_required_fields) {
continue;
}
printer->Print(
"switch ($oneofname$_case()) {\n",
"oneofname", oneof->name());
printer->Indent();
for (int j = 0; j < oneof->field_count(); j++) {
const FieldDescriptor* field = oneof->field(j);
printer->Print(
"case k$field_name$: {\n",
"field_name", UnderscoresToCamelCase(field->name(), true));
printer->Indent();
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
!ShouldIgnoreRequiredFieldCheck(field, options_) &&
scc_analyzer_->HasRequiredFields(field->message_type())) {
GOOGLE_CHECK(!(field->options().weak() || !field->containing_oneof()));
if (field->options().weak()) {
// Just skip.
} else {
printer->Print(
"if (has_$name$()) {\n"
" if (!this->$name$().IsInitialized()) return false;\n"
"}\n",
"name", FieldName(field));
}
}
printer->Print(
"break;\n");
printer->Outdent();
printer->Print(
"}\n");
}
printer->Print(
"case $cap_oneof_name$_NOT_SET: {\n"
" break;\n"
"}\n",
"cap_oneof_name",
ToUpper(oneof->name()));
printer->Outdent();
printer->Print(
"}\n");
}
printer->Outdent();
printer->Print(
" return true;\n"
"}\n");
}
} // namespace cpp
} // namespace compiler
} // namespace protobuf
} // namespace google