blob: e15b793b8204d700b983cc168663efd9129523b6 [file] [log] [blame]
// Copyright 2014 The Bazel Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.devtools.build.lib.packages;
import com.google.common.base.Preconditions;
import com.google.common.base.Verify;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Iterables;
import com.google.common.collect.Lists;
import com.google.devtools.build.lib.cmdline.Label;
import com.google.devtools.build.lib.collect.CollectionUtils;
import com.google.devtools.build.lib.packages.Attribute.ComputationLimiter;
import com.google.devtools.build.lib.packages.BuildType.Selector;
import com.google.devtools.build.lib.packages.BuildType.SelectorList;
import com.google.devtools.build.lib.packages.Type.LabelClass;
import com.google.devtools.build.lib.packages.Type.ListType;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.LinkedHashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.atomic.AtomicInteger;
import javax.annotation.Nullable;
/**
* {@link AttributeMap} implementation that provides the ability to retrieve <i>all possible</i>
* values an attribute might take.
*/
public class AggregatingAttributeMapper extends AbstractAttributeMapper {
private final Rule rule;
private AggregatingAttributeMapper(Rule rule) {
super(rule.getPackage(), rule.getRuleClassObject(), rule.getLabel(),
rule.getAttributeContainer());
this.rule = rule;
}
public static AggregatingAttributeMapper of(Rule rule) {
return new AggregatingAttributeMapper(rule);
}
/**
* Returns all of this rule's attributes that are non-configurable. These are unconditionally
* available to computed defaults no matter what dependencies they've declared.
*/
private List<String> getNonConfigurableAttributes() {
return rule.getRuleClassObject().getNonConfigurableAttributes();
}
/**
* Override that also visits the rule's configurable attribute keys (which are themselves labels).
*
* <p>This method directly parses each selector, vs. calling {@link #visitAttribute} to iterate
* over all possible values. The latter has dangerous efficiency consequences, as discussed in
* {@link #visitAttribute}'s documentation. So we want to avoid that code path when possible.
*/
@Override
protected void visitLabels(Attribute attribute, Type.LabelVisitor<Attribute> visitor) {
visitLabels(attribute, true, visitor);
}
private void visitLabels(
Attribute attribute, boolean includeSelectKeys, Type.LabelVisitor<Attribute> visitor) {
Type<?> type = attribute.getType();
SelectorList<?> selectorList = getSelectorList(attribute.getName(), type);
if (selectorList == null) {
if (type.getLabelClass().equals(LabelClass.NONE)) {
return; // Skip non-label attributes for performance.
}
if (getComputedDefault(attribute.getName(), attribute.getType()) != null) {
// Computed defaults are a special pain: we have no choice but to iterate through their
// (computed) values and look for labels.
for (Object value : visitAttribute(attribute.getName(), attribute.getType())) {
if (value != null) {
type.visitLabels(visitor, value, attribute);
}
}
} else {
super.visitLabels(attribute, visitor);
}
} else {
for (Selector<?> selector : selectorList.getSelectors()) {
for (Map.Entry<Label, ?> selectorEntry : selector.getEntries().entrySet()) {
if (includeSelectKeys && !BuildType.Selector.isReservedLabel(selectorEntry.getKey())) {
visitor.visit(selectorEntry.getKey(), attribute);
}
Object value = selector.isValueSet(selectorEntry.getKey())
? selectorEntry.getValue()
: attribute.getDefaultValue(null);
type.visitLabels(visitor, value, attribute);
}
}
}
}
/**
* Returns all labels reachable via the given attribute, with duplicate instances removed.
*
* <p>Use this interface over @link #visitAttribute} whenever possible, since the latter has
* efficiency problems discussed in that method's documentation.
*
* @param includeSelectKeys whether to include config_setting keys for configurable attributes
*/
public Set<Label> getReachableLabels(String attributeName, boolean includeSelectKeys) {
final ImmutableSet.Builder<Label> builder = ImmutableSet.<Label>builder();
visitLabels(
getAttributeDefinition(attributeName),
includeSelectKeys,
(label, attribute) -> builder.add(label));
return builder.build();
}
private static ImmutableSet.Builder<Label> addDuplicateLabels(
ImmutableSet.Builder<Label> builder, List<Label> labels) {
Set<Label> duplicates = CollectionUtils.duplicatedElementsOf(labels);
if (duplicates.isEmpty()) {
return builder;
}
if (builder == null) {
builder = ImmutableSet.builderWithExpectedSize(duplicates.size());
}
builder.addAll(duplicates);
return builder;
}
/**
* Returns the labels that might appear multiple times in the same attribute value.
*/
public Set<Label> checkForDuplicateLabels(Attribute attribute) {
String attrName = attribute.getName();
Type<?> attrType = attribute.getType();
ImmutableSet.Builder<Label> duplicates = null;
SelectorList<?> selectorList = getSelectorList(attribute.getName(), attrType);
if (selectorList == null || selectorList.getSelectors().size() == 1) {
// Three possible scenarios:
// 1) Plain old attribute (no selects). Without selects, visitAttribute runs efficiently.
// 2) Computed default, possibly depending on other attributes using select. In this case,
// visitAttribute might be inefficient. But we have no choice but to iterate over all
// possible values (since we have to compute them), so we take the efficiency hit.
// 3) "attr = select({...})". With just a single select, visitAttribute runs efficiently.
for (Object value : visitAttribute(attrName, attrType)) {
if (value != null) {
// TODO(bazel-team): Calculate duplicates directly using attrType.visitLabels in order to
// avoid intermediate collections here.
duplicates = addDuplicateLabels(duplicates, extractLabels(attrType, value));
}
}
} else {
// Multiple selects concatenated together. It's expensive to iterate over every possible
// value, so instead collect all labels across all the selects and check for duplicates.
// This is overly strict, since this counts duplicates across values. We can presumably
// relax this if necessary, but doing so would incur the value iteration expense this
// code path avoids.
List<Label> combinedLabels = new LinkedList<>(); // Labels that appear across all selectors.
for (Selector<?> selector : selectorList.getSelectors()) {
// Labels within a single selector. It's okay for there to be duplicates as long as
// they're in different selector paths (since only one path can actually get chosen).
Set<Label> selectorLabels = new LinkedHashSet<>();
for (Object selectorValue : selector.getEntries().values()) {
List<Label> labelsInSelectorValue = extractLabels(attrType, selectorValue);
// Duplicates within a single path are not okay.
duplicates = addDuplicateLabels(duplicates, labelsInSelectorValue);
Iterables.addAll(selectorLabels, labelsInSelectorValue);
}
combinedLabels.addAll(selectorLabels);
}
duplicates = addDuplicateLabels(duplicates, combinedLabels);
}
return duplicates == null ? ImmutableSet.of() : duplicates.build();
}
/**
* Returns a list of the possible values of the specified attribute in the specified rule.
*
* <p>If the attribute's value is a simple value, then this returns a singleton list of that
* value.
*
* <p>If the attribute's value is an expression containing one or many {@code select(...)}
* expressions, then this returns a list of all values that expression may evaluate to.
*
* <p>If the attribute does not have an explicit value for this rule, and the rule provides a
* computed default, the computed default function is evaluated given the rule's other attribute
* values as inputs and the output is returned in a singleton list.
*
* <p>If the attribute does not have an explicit value for this rule, and the rule provides a
* computed default, and the computed default function depends on other attributes whose values
* contain {@code select(...)} expressions, then the computed default function is evaluated for
* every possible combination of input values, and the list of outputs is returned.
*
* <p><b>EFFICIENCY WARNING:</b> Do not use this method unless you really need every single value
* the attribute might take. See {@link #visitAttribute}'s documentation for details.
*/
public Iterable<Object> getPossibleAttributeValues(Rule rule, Attribute attr) {
// Values may be null, so use normal collections rather than immutable collections.
// This special case for the visibility attribute is needed because its value is replaced
// with an empty list during package loading if it is public or private in order not to visit
// the package called 'visibility'.
if (attr.getName().equals("visibility")) {
List<Object> result = new ArrayList<>(1);
result.add(rule.getVisibility().getDeclaredLabels());
return result;
}
return Lists.<Object>newArrayList(visitAttribute(attr.getName(), attr.getType()));
}
/**
* If the attribute is a selector list of list type, then this method returns a list with number
* of elements equal to the number of select statements in the selector list. Each element of this
* list is equal to concatenating every possible attribute value in a single select statement.
* The conditions themselves in the select statements are completely ignored. Returns {@code null}
* if the attribute isn't of the desired format.
*
* As an example, if we have select({a: ["a"], b: ["a", "b"]}) + select({a: ["c", "d"], c: ["e"])
* The output will be [["a", "a", "b"], ["c", "d", "e"]]. The idea behind this structure is that
* at least some of the structure in the original selector list is preserved and we know any
* possible attribute value is the result of concatenating some sublist of each element.
*/
@Nullable
public <T> Iterable<T> getConcatenatedSelectorListsOfListType(
String attributeName, Type<T> type) {
SelectorList<T> selectorList = getSelectorList(attributeName, type);
if (selectorList != null && type instanceof ListType) {
List<T> selectList = new ArrayList<>();
for (Selector<T> selector : selectorList.getSelectors()) {
selectList.add(type.concat(selector.getEntries().values()));
}
return ImmutableList.copyOf(selectList);
}
return null;
}
/**
* Returns a list of all possible values an attribute can take for this rule.
*
* <p><b>EFFICIENCY WARNING:</b> Do not use this method unless you really need every single value
* the attribute might take.
*
* <p>This is dangerous because it's easy to write attributes with an exponential number of
* possible values:
*
* <pre>
* foo = select({a: 1, b: 2} + select({c: 3, d: 4}) + select({e: 5, f: 6})
* </pre>
*
* <p>Possible values: <code>[135, 136, 145, 146, 235, 236, 245, 246]</code> (i.e. 2^3).
*
* <p>This is true not just for attributes with multiple selects, but also
* {@link Attribute.ComputedDefault}s depending on such attributes.
*
* <p>More often than not, calling code doesn't really need every value, but really just wants to
* know, e.g., which labels might appear in a dependency list. For such cases, merging methods
* like {@link #getReachableLabels} work just as well without the efficiency hit. Use those
* whenever possible.
*/
public <T> Iterable<T> visitAttribute(String attributeName, Type<T> type) {
// If this attribute value is configurable, visit all possible values.
SelectorList<T> selectorList = getSelectorList(attributeName, type);
if (selectorList != null) {
ImmutableList.Builder<T> builder = ImmutableList.builder();
visitConfigurableAttribute(selectorList.getSelectors(), new BoundSelectorPaths(), type,
null, builder);
return builder.build();
}
// If this attribute is a computed default, feed it all possible value combinations of
// its declared dependencies and return all computed results. For example, if this default
// uses attributes x and y, x can configurably be x1 or x2, and y can configurably be y1
// or y1, then compute default values for the (x1,y1), (x1,y2), (x2,y1), and (x2,y2) cases.
Attribute.ComputedDefault computedDefault = getComputedDefault(attributeName, type);
if (computedDefault != null) {
return computedDefault.getPossibleValues(type, rule);
}
// For any other attribute, just return its direct value.
T value = get(attributeName, type);
return value == null ? ImmutableList.<T>of() : ImmutableList.of(value);
}
/**
* Determines all possible values a configurable attribute can take. Do not call this method
* unless really necessary (see TODO comment inside).
*
* @param selectors the selectors that make up this attribute assignment (in order)
* @param boundSelectorPaths paths that have already been chosen from previous selectors in an
* earlier recursive call of this method. For example, given
* <pre>cmd = select({':a': 'w', ':b': 'x'}) + select({':a': 'y', ':b': 'z'})</pre>
* the only possible values for <code>cmd</code> are <code>"wy"</code> and <code>"xz"</code>.
* This is because the selects have the same conditions, so whatever matches the first also
* matches the second. Note that this doesn't work for selects with overlapping but
* <i>different</i> key sets. That's because of key specialization (see
* {@link ConfiguredAttributeMapper} - if the
* second select also included a condition <code>':c'</code> that includes both the flags
* in <code>':a'</code> and <code>':b'</code>, <code>':c'</code> would be chosen over
* them both.
* @param type the type of this attribute
* @param currentValueSoFar the partial value produced so far from earlier calls to this method
* @param valuesBuilder output container for full values this attribute can take
*/
private <T> void visitConfigurableAttribute(List<Selector<T>> selectors,
BoundSelectorPaths boundSelectorPaths, Type<T> type, T currentValueSoFar,
ImmutableList.Builder<T> valuesBuilder) {
// TODO(bazel-team): minimize or eliminate uses of this interface. It necessarily grows
// exponentially with the number of selects in the attribute. Is that always necessary?
// For example, dependency resolution just needs to know every possible label an attribute
// might reference, but it doesn't need to know the exact combination of labels that make
// up a value. This may be even less important for non-label values (e.g. strings), which
// have no impact on the dependency structure.
if (selectors.isEmpty()) {
if (currentValueSoFar != null) {
// Null values arise when a None is used as the value of a Selector for a type without a
// default value.
// TODO(gregce): visitAttribute should probably convey that an unset attribute is possible.
// Therefore we need to actually handle null values here.
valuesBuilder.add(currentValueSoFar);
}
} else {
Selector<T> firstSelector = selectors.get(0);
List<Selector<T>> remainingSelectors = selectors.subList(1, selectors.size());
Map<Label, T> firstSelectorEntries = firstSelector.getEntries();
Label boundKey = boundSelectorPaths.getChosenKey(firstSelectorEntries.keySet());
if (boundKey != null) {
// If we've already followed some path from a previous selector with the same exact
// conditions as this one, we only need to visit that path (since the same key will
// match both selectors).
T boundValue = firstSelectorEntries.get(boundKey);
visitConfigurableAttribute(remainingSelectors, boundSelectorPaths, type,
currentValueSoFar == null
? boundValue
: type.concat(ImmutableList.of(currentValueSoFar, boundValue)),
valuesBuilder);
} else {
// Otherwise, we need to iterate over all possible paths.
for (Map.Entry<Label, T> selectorBranch : firstSelectorEntries.entrySet()) {
// Bind this particular path for later selectors using the same conditions.
boundSelectorPaths.bind(firstSelectorEntries.keySet(), selectorBranch.getKey());
visitConfigurableAttribute(remainingSelectors, boundSelectorPaths, type,
currentValueSoFar == null
? selectorBranch.getValue()
: type.concat(ImmutableList.of(currentValueSoFar, selectorBranch.getValue())),
valuesBuilder);
// Unbind the path (so when we pop back up the recursive stack we can rebind it to new
// values if we visit this selector again).
boundSelectorPaths.unbind(firstSelectorEntries.keySet());
}
}
}
}
/**
* Helper class for {@link #visitConfigurableAttribute}. See that method's comments for more
* details.
*/
private static class BoundSelectorPaths {
private final Map<Set<Label>, Label> bindings = new HashMap<>();
/**
* Binds the given config key set to the specified path. There should be no previous binding
* for this key set.
*/
public void bind(Set<Label> allKeys, Label chosenKey) {
Preconditions.checkState(allKeys.contains(chosenKey));
Verify.verify(bindings.put(allKeys, chosenKey) == null);
}
/**
* Unbinds the given config key set.
*/
public void unbind(Set<Label> allKeys) {
Verify.verifyNotNull(bindings.remove(allKeys));
}
/**
* Returns the key this config key set is bound to or null if no binding.
*/
public Label getChosenKey(Set<Label> allKeys) {
return bindings.get(allKeys);
}
}
/**
* Given a list of attributes, creates an {attrName -> attrValue} map for every possible
* combination of those attributes' values and returns a list of all the maps.
*
* <p>For example, given attributes x and y, which respectively have possible values x1, x2 and
* y1, y2, this returns:
*
* <pre>
* [
* {x: x1, y: y1},
* {x: x1, y: y2},
* {x: x2, y: y1},
* {x: x2, y: y2}
* ]
* </pre>
*
* <p>The work done by this method may be limited by providing a {@link ComputationLimiter} that
* throws if too much work is attempted.
*/
<TException extends Exception> List<Map<String, Object>> visitAttributes(
List<String> attributes, ComputationLimiter<TException> limiter) throws TException {
List<Map<String, Object>> depMaps = new LinkedList<>();
AtomicInteger combinationsSoFar = new AtomicInteger(0);
visitAttributesInner(
attributes,
depMaps,
new HashMap<String, Object>(attributes.size()),
combinationsSoFar,
limiter);
return depMaps;
}
/**
* A recursive function used in the implementation of {@link #visitAttributes}.
*
* @param attributes a list of attributes that are yet to be visited.
* @param mappings a mutable list of {attrName --> attrValue} maps collected so far. This method
* will add newly discovered maps to the list.
* @param currentMap {attrName --> attrValue} assignments accumulated so far, not including those
* in {@code attributes}. This map may be mutated and as such must be copied if we wish to
* preserve its state, such as in the base case.
* @param combinationsSoFar a counter for all previously processed combinations of possible
* values.
* @param limiter a strategy to limit the work done by invocations of this method.
*/
private <TException extends Exception> void visitAttributesInner(
List<String> attributes,
List<Map<String, Object>> mappings,
Map<String, Object> currentMap,
AtomicInteger combinationsSoFar,
ComputationLimiter<TException> limiter)
throws TException {
if (attributes.isEmpty()) {
// Because this method uses exponential time/space on the number of inputs, we may limit
// the total number of method calls.
limiter.onComputationCount(combinationsSoFar.incrementAndGet());
// Recursive base case: snapshot and store whatever's already been populated in currentMap.
mappings.add(new HashMap<>(currentMap));
return;
}
// Take the first attribute in the dependency list and iterate over all its values. For each
// value x, update currentMap with the additional entry { firstAttrName: x }, then feed
// this recursively into a subcall over all remaining dependencies. This recursively
// continues until we run out of values.
String currentAttribute = attributes.get(0);
Iterable<?> firstAttributePossibleValues =
visitAttribute(currentAttribute, getAttributeType(currentAttribute));
List<String> restOfAttrs = attributes.subList(1, attributes.size());
for (Object value : firstAttributePossibleValues) {
// Overwrite each time.
currentMap.put(currentAttribute, value);
visitAttributesInner(restOfAttrs, mappings, currentMap, combinationsSoFar, limiter);
}
}
/**
* Returns an {@link AttributeMap} that delegates to {@code AggregatingAttributeMapper.this}
* except for {@link #get} calls for attributes that are configurable. In that case, the {@link
* AttributeMap} looks up an attribute's value in {@code directMap}. Any attempt to {@link #get} a
* configurable attribute that's not in {@code directMap} causes an {@link
* IllegalArgumentException} to be thrown.
*/
AttributeMap createMapBackedAttributeMap(final Map<String, Object> directMap) {
final AggregatingAttributeMapper owner = AggregatingAttributeMapper.this;
return new AttributeMap() {
@Override
public <T> T get(String attributeName, Type<T> type) {
owner.checkType(attributeName, type);
if (getNonConfigurableAttributes().contains(attributeName)) {
return owner.get(attributeName, type);
}
if (!directMap.containsKey(attributeName)) {
throw new IllegalArgumentException(
"attribute \""
+ attributeName
+ "\" isn't available in this computed default context");
}
return type.cast(directMap.get(attributeName));
}
@Override
public boolean isConfigurable(String attributeName) {
return owner.isConfigurable(attributeName);
}
@Override
public String getName() {
return owner.getName();
}
@Override
public Label getLabel() {
return owner.getLabel();
}
@Override
public String getRuleClassName() {
return owner.getRuleClassName();
}
@Override
public Iterable<String> getAttributeNames() {
return ImmutableList.<String>builder()
.addAll(directMap.keySet())
.addAll(getNonConfigurableAttributes())
.build();
}
@Override
public Collection<DepEdge> visitLabels() throws InterruptedException {
return owner.visitLabels();
}
@Override
public Collection<DepEdge> visitLabels(Attribute attribute) throws InterruptedException {
return owner.visitLabels(attribute);
}
@Override
public String getPackageDefaultHdrsCheck() {
return owner.getPackageDefaultHdrsCheck();
}
@Override
public Boolean getPackageDefaultTestOnly() {
return owner.getPackageDefaultTestOnly();
}
@Override
public String getPackageDefaultDeprecation() {
return owner.getPackageDefaultDeprecation();
}
@Override
public ImmutableList<String> getPackageDefaultCopts() {
return owner.getPackageDefaultCopts();
}
@Nullable
@Override
public Type<?> getAttributeType(String attrName) {
return owner.getAttributeType(attrName);
}
@Nullable
@Override
public Attribute getAttributeDefinition(String attrName) {
return owner.getAttributeDefinition(attrName);
}
@Override
public boolean isAttributeValueExplicitlySpecified(String attributeName) {
return owner.isAttributeValueExplicitlySpecified(attributeName);
}
@Override
public boolean has(String attrName) {
return owner.has(attrName);
}
@Override
public <T> boolean has(String attrName, Type<T> type) {
return owner.has(attrName, type);
}
};
}
private static ImmutableList<Label> extractLabels(Type<?> type, Object value) {
final ImmutableList.Builder<Label> result = ImmutableList.builder();
type.visitLabels(
(label, dummy) -> {
if (label != null) {
result.add(label);
}
},
value,
/*context=*/ null);
return result.build();
}
}