blob: 8d6ed7990e4f81e62ab6495c6094c306143b7063 [file] [log] [blame]
// Copyright 2017 The Bazel Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.devtools.build.skyframe;
import static java.lang.Math.min;
import com.google.common.base.Preconditions;
import com.google.common.base.Throwables;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableMap;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Iterables;
import com.google.common.collect.Sets;
import com.google.common.flogger.GoogleLogger;
import com.google.common.graph.ImmutableGraph;
import com.google.common.graph.Traverser;
import com.google.common.util.concurrent.ListenableFuture;
import com.google.devtools.build.lib.bugreport.BugReport;
import com.google.devtools.build.lib.clock.BlazeClock;
import com.google.devtools.build.lib.concurrent.AbstractQueueVisitor;
import com.google.devtools.build.lib.concurrent.MultiExecutorQueueVisitor;
import com.google.devtools.build.lib.concurrent.QuiescingExecutor;
import com.google.devtools.build.lib.events.Event;
import com.google.devtools.build.lib.events.ExtendedEventHandler;
import com.google.devtools.build.lib.profiler.Profiler;
import com.google.devtools.build.lib.profiler.ProfilerTask;
import com.google.devtools.build.lib.supplier.InterruptibleSupplier;
import com.google.devtools.build.lib.util.GroupedList.GroupedListHelper;
import com.google.devtools.build.skyframe.EvaluationProgressReceiver.EvaluationState;
import com.google.devtools.build.skyframe.EvaluationProgressReceiver.NodeState;
import com.google.devtools.build.skyframe.MemoizingEvaluator.EmittedEventState;
import com.google.devtools.build.skyframe.NodeEntry.DependencyState;
import com.google.devtools.build.skyframe.NodeEntry.DirtyState;
import com.google.devtools.build.skyframe.QueryableGraph.Reason;
import com.google.devtools.build.skyframe.SkyFunction.Restart;
import com.google.devtools.build.skyframe.SkyFunctionEnvironment.UndonePreviouslyRequestedDeps;
import com.google.devtools.build.skyframe.SkyFunctionException.ReifiedSkyFunctionException;
import com.google.devtools.build.skyframe.ThinNodeEntry.DirtyType;
import com.google.devtools.build.skyframe.proto.GraphInconsistency.Inconsistency;
import java.io.IOException;
import java.time.Duration;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.Supplier;
import javax.annotation.Nullable;
/**
* Defines the evaluation action used in the multi-threaded Skyframe evaluation, and constructs the
* {@link ParallelEvaluatorContext} that the actions rely on.
*
* <p>This does not implement other parts of Skyframe evaluation setup and post-processing, such as
* translating a set of requested top-level nodes into actions, or constructing an evaluation
* result. Derived classes should do this.
*/
abstract class AbstractParallelEvaluator {
private static final GoogleLogger logger = GoogleLogger.forEnclosingClass();
/**
* The priority to use the first time a node is restarted.
*
* <p>This is designed to be higher than any value coming from {@link #globalEnqueuedIndex} so
* that we get nodes that have previously started evaluation off our plate.
*/
private static final int FIRST_RESTART_PRIORITY = Integer.MAX_VALUE / 2;
final ProcessableGraph graph;
final ParallelEvaluatorContext evaluatorContext;
protected final CycleDetector cycleDetector;
/**
* Monotonically increasing counter designed to encourage depth-first graph exploration.
*
* <p>It is expected that this never exceeds {@link #FIRST_RESTART_PRIORITY}.
*/
private final AtomicInteger globalEnqueuedIndex = new AtomicInteger(Integer.MIN_VALUE);
AbstractParallelEvaluator(
ProcessableGraph graph,
Version graphVersion,
ImmutableMap<SkyFunctionName, SkyFunction> skyFunctions,
ExtendedEventHandler reporter,
EmittedEventState emittedEventState,
EventFilter storedEventFilter,
ErrorInfoManager errorInfoManager,
boolean keepGoing,
DirtyTrackingProgressReceiver progressReceiver,
GraphInconsistencyReceiver graphInconsistencyReceiver,
Supplier<ExecutorService> executorService,
CycleDetector cycleDetector,
EvaluationVersionBehavior evaluationVersionBehavior) {
this(
graph,
graphVersion,
skyFunctions,
reporter,
emittedEventState,
storedEventFilter,
errorInfoManager,
keepGoing,
progressReceiver,
graphInconsistencyReceiver,
executorService,
cycleDetector,
evaluationVersionBehavior,
/*cpuHeavySkyKeysThreadPoolSize=*/ 0,
/*executionJobsThreadPoolSize=*/ 0);
}
AbstractParallelEvaluator(
ProcessableGraph graph,
Version graphVersion,
ImmutableMap<SkyFunctionName, SkyFunction> skyFunctions,
ExtendedEventHandler reporter,
EmittedEventState emittedEventState,
EventFilter storedEventFilter,
ErrorInfoManager errorInfoManager,
boolean keepGoing,
DirtyTrackingProgressReceiver progressReceiver,
GraphInconsistencyReceiver graphInconsistencyReceiver,
Supplier<ExecutorService> executorService,
CycleDetector cycleDetector,
EvaluationVersionBehavior evaluationVersionBehavior,
int cpuHeavySkyKeysThreadPoolSize,
int executionJobsThreadPoolSize) {
this.graph = graph;
this.cycleDetector = cycleDetector;
Supplier<QuiescingExecutor> quiescingExecutorSupplier =
getQuiescingExecutorSupplier(
executorService, cpuHeavySkyKeysThreadPoolSize, executionJobsThreadPoolSize);
evaluatorContext =
new ParallelEvaluatorContext(
graph,
graphVersion,
skyFunctions,
reporter,
emittedEventState,
keepGoing,
progressReceiver,
storedEventFilter,
errorInfoManager,
graphInconsistencyReceiver,
() ->
new NodeEntryVisitor(
quiescingExecutorSupplier.get(), progressReceiver, Evaluate::new),
evaluationVersionBehavior);
}
private Supplier<QuiescingExecutor> getQuiescingExecutorSupplier(
Supplier<ExecutorService> executorService,
int cpuHeavySkyKeysThreadPoolSize,
int executionJobsThreadPoolSize) {
if (cpuHeavySkyKeysThreadPoolSize <= 0) {
return () ->
AbstractQueueVisitor.createWithExecutorService(
executorService.get(),
/*failFastOnException=*/ true,
NodeEntryVisitor.NODE_ENTRY_VISITOR_ERROR_CLASSIFIER);
}
if (executionJobsThreadPoolSize <= 0) {
return () ->
MultiExecutorQueueVisitor.createWithExecutorServices(
executorService.get(),
AbstractQueueVisitor.createExecutorService(
/*parallelism=*/ cpuHeavySkyKeysThreadPoolSize,
"skyframe-evaluator-cpu-heavy",
// FJP performs much better on machines with many cores.
/*useForkJoinPool=*/ true),
/*failFastOnException=*/ true,
NodeEntryVisitor.NODE_ENTRY_VISITOR_ERROR_CLASSIFIER);
}
// We only consider the experimental case of merged Skyframe phases WITH a separate pool for
// CPU-heavy tasks, since that's the default behavior moving forward. Blocker: b/194319860.
return () ->
MultiExecutorQueueVisitor.createWithExecutorServices(
executorService.get(),
AbstractQueueVisitor.createExecutorService(
/*parallelism=*/ cpuHeavySkyKeysThreadPoolSize,
"skyframe-evaluator-cpu-heavy",
// FJP performs much better on machines with many cores.
/*useForkJoinPool=*/ true),
AbstractQueueVisitor.createExecutorService(
/*parallelism=*/ executionJobsThreadPoolSize,
"skyframe-evaluator-execution",
// FJP performs much better on machines with many cores.
/*useForkJoinPool=*/ true),
/*failFastOnException=*/ true,
NodeEntryVisitor.NODE_ENTRY_VISITOR_ERROR_CLASSIFIER);
}
/**
* If the entry is dirty and not already rebuilding, puts it in a state so that it can rebuild.
*/
static void maybeMarkRebuilding(NodeEntry entry) {
if (entry.isDirty()
&& entry.getDirtyState() != DirtyState.REBUILDING
&& entry.getDirtyState() != DirtyState.FORCED_REBUILDING) {
entry.markRebuilding();
}
}
enum DirtyOutcome {
ALREADY_PROCESSED,
NEEDS_EVALUATION
}
/**
* An action that evaluates a value.
*
* <p>{@link Comparable} for use in priority queues. Experimentally, grouping enqueued evaluations
* together by parent leads to fewer in-flight evaluations and thus lower peak memory usage. Thus
* we store the {@link #evaluationPriority} (coming from the {@link #globalEnqueuedIndex} and use
* it for comparisons: later enqueuings should be evaluated earlier, to do a depth-first search,
* except for re-enqueued nodes, which always get top priority.
*
* <p>This is not applicable when using a {@link ForkJoinPool}, since it does not allow for easy
* work prioritization.
*/
private final class Evaluate implements ParallelEvaluatorContext.ComparableRunnable {
private final SkyKey skyKey;
private final int evaluationPriority;
private Evaluate(SkyKey skyKey, int evaluationPriority) {
this.skyKey = skyKey;
this.evaluationPriority = evaluationPriority;
}
@Override
public int compareTo(ParallelEvaluatorContext.ComparableRunnable other) {
// Put other one first, so larger values come first in priority queue.
return Integer.compare(((Evaluate) other).evaluationPriority, this.evaluationPriority);
}
private int determineChildPriority() {
// If this evaluation is already running at a high priority, its children should be evaluated
// at an even higher priority - they are blocking a high priority node.
if (evaluationPriority >= FIRST_RESTART_PRIORITY) {
return evenHigherPriority();
}
int nextPriority = globalEnqueuedIndex.incrementAndGet();
if (nextPriority == FIRST_RESTART_PRIORITY) {
BugReport.sendBugReport(
new ArithmeticException("Child priority has reached restart priority"));
}
return nextPriority;
}
private int determineRestartPriority() {
// Each time a node is restarted, its priority increases so that it doesn't get lost behind
// other restarted nodes.
return evaluationPriority >= FIRST_RESTART_PRIORITY
? evenHigherPriority()
: FIRST_RESTART_PRIORITY;
}
private int evenHigherPriority() {
if (evaluationPriority == Integer.MAX_VALUE) {
BugReport.sendBugReport(new ArithmeticException("Priority has reached Integer.MAX_VALUE"));
return Integer.MAX_VALUE;
}
return evaluationPriority + 1;
}
/**
* Notes the rdep from the parent to the child, and then does the appropriate thing with the
* child or the parent, returning whether the parent has both been signalled and also is ready
* for evaluation.
*/
private boolean enqueueChild(
SkyKey skyKey,
NodeEntry entry,
SkyKey child,
NodeEntry childEntry,
boolean depAlreadyExists,
int childEvaluationPriority,
boolean enqueueParentIfReady)
throws InterruptedException {
Preconditions.checkState(!entry.isDone(), "%s %s", skyKey, entry);
DependencyState dependencyState;
try {
dependencyState =
depAlreadyExists
? childEntry.checkIfDoneForDirtyReverseDep(skyKey)
: childEntry.addReverseDepAndCheckIfDone(skyKey);
} catch (IllegalStateException e) {
// Add some more context regarding crashes.
throw new IllegalStateException("child key: " + child + " error: " + e.getMessage(), e);
}
switch (dependencyState) {
case DONE:
if (entry.signalDep(childEntry.getVersion(), child)) {
if (enqueueParentIfReady) {
evaluatorContext.getVisitor().enqueueEvaluation(skyKey, determineRestartPriority());
}
return true;
}
break;
case ALREADY_EVALUATING:
break;
case NEEDS_SCHEDULING:
evaluatorContext.getVisitor().enqueueEvaluation(child, childEvaluationPriority);
break;
}
return false;
}
/**
* Returns true if this depGroup consists of the error transience value and the error transience
* value is newer than the entry, meaning that the entry must be re-evaluated.
*/
private boolean invalidatedByErrorTransience(Collection<SkyKey> depGroup, NodeEntry entry)
throws InterruptedException {
return depGroup.size() == 1
&& depGroup.contains(ErrorTransienceValue.KEY)
&& !graph
.get(null, Reason.OTHER, ErrorTransienceValue.KEY)
.getVersion()
.atMost(entry.getVersion());
}
private DirtyOutcome maybeHandleDirtyNode(NodeEntry state) throws InterruptedException {
while (state.getDirtyState().equals(DirtyState.CHECK_DEPENDENCIES)) {
// Evaluating a dirty node for the first time, and checking its children to see if any
// of them have changed. Note that there must be dirty children for this to happen.
// Check the children group by group -- we don't want to evaluate a value that is no
// longer needed because an earlier dependency changed. For example, //foo:foo depends
// on target //bar:bar and is built. Then foo/BUILD is modified to remove the dependence
// on bar, and bar/BUILD is deleted. Reloading //bar:bar would incorrectly throw an
// exception. To avoid this, we must reload foo/BUILD first, at which point we will
// discover that it has changed, and re-evaluate target //foo:foo from scratch.
// On the other hand, when an action requests all of its inputs, we can safely check all
// of them in parallel on a subsequent build. So we allow checking an entire group in
// parallel here, if the node builder requested a group last build.
// Note: every dep returned here must either have this node re-registered for it (using
// checkIfDoneForDirtyReverseDep) and be registered as a direct dep of this node, or have
// its reverse dep on this node removed. Failing to do either one of these would result in
// a graph inconsistency, where the child had a reverse dep on this node, but this node
// had no kind of dependency on the child.
List<SkyKey> directDepsToCheck = state.getNextDirtyDirectDeps();
if (invalidatedByErrorTransience(directDepsToCheck, state)) {
// If this dep is the ErrorTransienceValue and the ErrorTransienceValue has been
// updated then we need to force a rebuild. We would like to just signal the entry as
// usual, but we can't, because then the ErrorTransienceValue would remain as a dep,
// which would be incorrect if, for instance, the value re-evaluated to a non-error.
state.forceRebuild();
graph.get(skyKey, Reason.RDEP_REMOVAL, ErrorTransienceValue.KEY).removeReverseDep(skyKey);
return DirtyOutcome.NEEDS_EVALUATION;
}
Map<SkyKey, ? extends NodeEntry> entriesToCheck = null;
if (!evaluatorContext.keepGoing()) {
// This check ensures that we maintain the invariant that if a node with an error is
// reached during a no-keep-going build, none of its currently building parents
// finishes building. If the child isn't done building yet, it will detect on its own
// that it has an error (see the VERIFIED_CLEAN case below). On the other hand, if it
// is done, then it is the parent's responsibility to notice that, which we do here.
// We check the deps for errors so that we don't continue building this node if it has
// a child error.
entriesToCheck = graph.getBatch(skyKey, Reason.OTHER, directDepsToCheck);
for (Map.Entry<SkyKey, ? extends NodeEntry> entry : entriesToCheck.entrySet()) {
NodeEntry nodeEntryToCheck = entry.getValue();
SkyValue valueMaybeWithMetadata = nodeEntryToCheck.getValueMaybeWithMetadata();
if (valueMaybeWithMetadata == null) {
continue;
}
ErrorInfo maybeErrorInfo = ValueWithMetadata.getMaybeErrorInfo(valueMaybeWithMetadata);
if (maybeErrorInfo == null) {
continue;
}
// This child has an error. We add a dep from this node to it and throw an exception
// coming from it.
SkyKey errorKey = entry.getKey();
state.addTemporaryDirectDeps(GroupedListHelper.create(errorKey));
nodeEntryToCheck.checkIfDoneForDirtyReverseDep(skyKey);
// Perform the necessary bookkeeping for any deps that are not being used.
for (Map.Entry<SkyKey, ? extends NodeEntry> depEntry : entriesToCheck.entrySet()) {
if (!depEntry.getKey().equals(errorKey)) {
depEntry.getValue().removeReverseDep(skyKey);
}
}
if (!evaluatorContext.getVisitor().preventNewEvaluations()) {
// An error was already thrown in the evaluator. Don't do anything here.
return DirtyOutcome.ALREADY_PROCESSED;
}
throw SchedulerException.ofError(maybeErrorInfo, errorKey, ImmutableSet.of(skyKey));
}
}
// It is safe to add these deps back to the node -- even if one of them has changed, the
// contract of pruning is that the node will request these deps again when it rebuilds.
// We must add these deps before enqueuing them, so that the node knows that it depends
// on them. If one of these deps is the error transience node, the check we did above
// in #invalidatedByErrorTransience means that the error transience node is not newer
// than this node, so we are going to mark it clean (since the error transience node is
// always the last dep).
state.addTemporaryDirectDepsGroupToDirtyEntry(directDepsToCheck);
DepsReport depsReport = graph.analyzeDepsDoneness(skyKey, directDepsToCheck);
Collection<SkyKey> unknownStatusDeps =
depsReport.hasInformation() ? depsReport : directDepsToCheck;
boolean needsScheduling = false;
for (int i = 0; i < directDepsToCheck.size() - unknownStatusDeps.size(); i++) {
// Since all of these nodes were done at an earlier version than this one, we may safely
// signal with the minimal version, since they cannot trigger a re-evaluation.
needsScheduling = state.signalDep(MinimalVersion.INSTANCE, /*childForDebugging=*/ null);
}
if (needsScheduling) {
Preconditions.checkState(
unknownStatusDeps.isEmpty(),
"Ready without all deps checked? %s %s %s",
skyKey,
state,
unknownStatusDeps);
continue;
}
if (entriesToCheck == null || depsReport.hasInformation()) {
entriesToCheck = graph.getBatch(skyKey, Reason.ENQUEUING_CHILD, unknownStatusDeps);
}
boolean parentIsSignalledAndReady =
handleKnownChildrenForDirtyNode(
unknownStatusDeps,
entriesToCheck,
state,
determineChildPriority(),
/*enqueueParentIfReady=*/ false);
if (!parentIsSignalledAndReady
|| evaluatorContext.getVisitor().shouldPreventNewEvaluations()) {
return DirtyOutcome.ALREADY_PROCESSED;
}
// If we're here, then we may proceed to the rest of the method and continue processing
// the node intra-thread. This is a performance optimization: By not enqueuing the node,
// we avoid contention on the queue data structure (between concurrent threads
// enqueueing and dequeueing), and we also save wall time since the node gets processed
// now rather than at some point in the future.
}
switch (state.getDirtyState()) {
case VERIFIED_CLEAN:
// No child has a changed value. This node can be marked done and its parents signaled
// without any re-evaluation.
NodeEntry.NodeValueAndRdepsToSignal nodeValueAndRdeps = state.markClean();
Set<SkyKey> rDepsToSignal = nodeValueAndRdeps.getRdepsToSignal();
// Make sure to replay events once change-pruned
replay(ValueWithMetadata.wrapWithMetadata(nodeValueAndRdeps.getValue()));
// Tell the receiver that the value was not actually changed this run.
evaluatorContext
.getProgressReceiver()
.evaluated(
skyKey,
/*newValue=*/ null,
/*newError=*/ null,
new EvaluationSuccessStateSupplier(state),
EvaluationState.CLEAN);
if (!evaluatorContext.keepGoing() && state.getErrorInfo() != null) {
if (!evaluatorContext.getVisitor().preventNewEvaluations()) {
return DirtyOutcome.ALREADY_PROCESSED;
}
throw SchedulerException.ofError(state.getErrorInfo(), skyKey, rDepsToSignal);
}
evaluatorContext.signalParentsAndEnqueueIfReady(
skyKey, rDepsToSignal, state.getVersion(), determineRestartPriority());
return DirtyOutcome.ALREADY_PROCESSED;
case NEEDS_REBUILDING:
state.markRebuilding();
return DirtyOutcome.NEEDS_EVALUATION;
case NEEDS_FORCED_REBUILDING:
state.forceRebuild();
return DirtyOutcome.NEEDS_EVALUATION;
case REBUILDING:
case FORCED_REBUILDING:
return DirtyOutcome.NEEDS_EVALUATION;
default:
throw new IllegalStateException("key: " + skyKey + ", entry: " + state);
}
}
/** Returns whether the parent has both been signalled and also is ready for evaluation. */
private boolean handleKnownChildrenForDirtyNode(
Collection<SkyKey> knownChildren,
Map<SkyKey, ? extends NodeEntry> oldChildren,
NodeEntry state,
int childEvaluationPriority,
boolean enqueueParentIfReady)
throws InterruptedException {
boolean parentIsSignalledAndReady = false;
if (oldChildren.size() != knownChildren.size()) {
GraphInconsistencyReceiver inconsistencyReceiver =
evaluatorContext.getGraphInconsistencyReceiver();
Set<SkyKey> missingChildren =
Sets.difference(ImmutableSet.copyOf(knownChildren), oldChildren.keySet());
if (!missingChildren.isEmpty()) {
inconsistencyReceiver.noteInconsistencyAndMaybeThrow(
skyKey, missingChildren, Inconsistency.DIRTY_PARENT_HAD_MISSING_CHILD);
}
Map<SkyKey, ? extends NodeEntry> recreatedEntries =
graph.createIfAbsentBatch(skyKey, Reason.ENQUEUING_CHILD, missingChildren);
for (Map.Entry<SkyKey, ? extends NodeEntry> recreatedEntry : recreatedEntries.entrySet()) {
parentIsSignalledAndReady |=
enqueueChild(
skyKey,
state,
recreatedEntry.getKey(),
recreatedEntry.getValue(),
/*depAlreadyExists=*/ false,
childEvaluationPriority,
enqueueParentIfReady);
}
}
for (Map.Entry<SkyKey, ? extends NodeEntry> e : oldChildren.entrySet()) {
SkyKey directDep = e.getKey();
NodeEntry directDepEntry = e.getValue();
parentIsSignalledAndReady |=
enqueueChild(
skyKey,
state,
directDep,
directDepEntry,
/*depAlreadyExists=*/ true,
childEvaluationPriority,
enqueueParentIfReady);
}
return parentIsSignalledAndReady;
}
@Override
public void run() {
SkyFunctionEnvironment env = null;
try {
NodeEntry state =
Preconditions.checkNotNull(graph.get(null, Reason.EVALUATION, skyKey), skyKey);
Preconditions.checkState(state.isReady(), "%s %s", skyKey, state);
try {
evaluatorContext.getProgressReceiver().stateStarting(skyKey, NodeState.CHECK_DIRTY);
if (maybeHandleDirtyNode(state) == DirtyOutcome.ALREADY_PROCESSED) {
return;
}
} finally {
evaluatorContext.getProgressReceiver().stateEnding(skyKey, NodeState.CHECK_DIRTY);
}
ImmutableSet<SkyKey> oldDeps = state.getAllRemainingDirtyDirectDeps();
try {
evaluatorContext
.getProgressReceiver()
.stateStarting(skyKey, NodeState.INITIALIZING_ENVIRONMENT);
env =
new SkyFunctionEnvironment(
skyKey, state.getTemporaryDirectDeps(), oldDeps, evaluatorContext);
} catch (UndonePreviouslyRequestedDeps undonePreviouslyRequestedDeps) {
// If a previously requested dep is no longer done, restart this node from scratch.
restart(skyKey, state);
evaluatorContext.getVisitor().enqueueEvaluation(skyKey, determineRestartPriority());
return;
} finally {
evaluatorContext
.getProgressReceiver()
.stateEnding(skyKey, NodeState.INITIALIZING_ENVIRONMENT);
}
SkyFunctionName functionName = skyKey.functionName();
SkyFunction factory =
Preconditions.checkNotNull(
evaluatorContext.getSkyFunctions().get(functionName),
"Unable to find SkyFunction '%s' for node with key %s, %s",
functionName,
skyKey,
state);
SkyValue value = null;
long startTimeNanos = BlazeClock.instance().nanoTime();
try {
try {
evaluatorContext.getProgressReceiver().stateStarting(skyKey, NodeState.COMPUTE);
value = factory.compute(skyKey, env);
} finally {
evaluatorContext.getProgressReceiver().stateEnding(skyKey, NodeState.COMPUTE);
long elapsedTimeNanos = BlazeClock.instance().nanoTime() - startTimeNanos;
if (elapsedTimeNanos > 0) {
Profiler.instance()
.logSimpleTaskDuration(
startTimeNanos,
Duration.ofNanos(elapsedTimeNanos),
ProfilerTask.SKYFUNCTION,
skyKey.functionName().getName());
}
}
} catch (final SkyFunctionException builderException) {
ReifiedSkyFunctionException reifiedBuilderException =
new ReifiedSkyFunctionException(builderException);
// In keep-going mode, we do not let SkyFunctions complete with a thrown error if they
// have missing deps. Instead, we wait until their deps are done and restart the
// SkyFunction, so we can have a definitive error and definitive graph structure, thus
// avoiding non-determinism. It's completely reasonable for SkyFunctions to throw eagerly
// because they do not know if they are in keep-going mode.
if (!evaluatorContext.keepGoing() || !env.valuesMissing()) {
boolean shouldFailFast =
!evaluatorContext.keepGoing() || builderException.isCatastrophic();
if (shouldFailFast) {
// After we commit this error to the graph but before the doMutatingEvaluation call
// completes with the error there is a race-like opportunity for the error to be used,
// either by an in-flight computation or by a future computation.
if (!evaluatorContext.getVisitor().preventNewEvaluations()) {
// This is not the first error encountered, so we ignore it so that we can terminate
// with the first error.
return;
} else {
logger.atWarning().withCause(builderException).log(
"Aborting evaluation while evaluating %s", skyKey);
}
}
if (maybeHandleRegisteringNewlyDiscoveredDepsForDoneEntry(
skyKey, state, oldDeps, env, evaluatorContext.keepGoing())) {
// A newly requested dep transitioned from done to dirty before this node finished.
// If shouldFailFast is true, this node won't be signalled by any such newly dirtied
// dep (because new evaluations have been prevented), and this node is responsible for
// throwing the SchedulerException below.
// Otherwise, this node will be signalled again, and so we should return.
if (!shouldFailFast) {
return;
}
}
boolean isTransitivelyTransient =
reifiedBuilderException.isTransient()
|| env.isAnyDirectDepErrorTransitivelyTransient()
|| env.isAnyNewlyRequestedDepErrorTransitivelyTransient();
ErrorInfo errorInfo =
evaluatorContext
.getErrorInfoManager()
.fromException(skyKey, reifiedBuilderException, isTransitivelyTransient);
// TODO(b/166268889): Remove when resolved. ActionExecutionValues are ending up with
// IOExceptions in them.
if (isTransitivelyTransient
&& !shouldFailFast
&& errorInfo.getException() instanceof IOException) {
// This is essentially unconditionally logged, and not often. Ok to evaluate eagerly.
String keyString = skyKey.toString();
String errorString = errorInfo.toString();
logger.atInfo().log(
"Got IOException for %s (%s)",
keyString.substring(0, min(1000, keyString.length())),
errorString.substring(0, min(1000, errorString.length())));
}
env.setError(state, errorInfo);
Set<SkyKey> rdepsToBubbleUpTo = env.commitAndGetParents(state);
if (shouldFailFast) {
evaluatorContext.signalParentsOnAbort(skyKey, rdepsToBubbleUpTo, state.getVersion());
throw SchedulerException.ofError(errorInfo, skyKey, rdepsToBubbleUpTo);
}
evaluatorContext.signalParentsAndEnqueueIfReady(
skyKey, rdepsToBubbleUpTo, state.getVersion(), determineRestartPriority());
return;
}
} catch (RuntimeException re) {
// Programmer error (most likely NPE or a failed precondition in a SkyFunction). Output
// some context together with the exception.
String msg = prepareCrashMessage(skyKey, state.getInProgressReverseDeps());
RuntimeException ex = new RuntimeException(msg, re);
evaluatorContext.getVisitor().noteCrash(ex);
throw ex;
} finally {
env.doneBuilding();
}
if (maybeHandleRestart(skyKey, state, value)) {
cancelExternalDeps(env);
evaluatorContext.getVisitor().enqueueEvaluation(skyKey, determineRestartPriority());
return;
}
// Helper objects for all the newly requested deps that weren't known to the environment,
// and may contain duplicate elements.
GroupedListHelper<SkyKey> newDirectDeps = env.getNewlyRequestedDeps();
if (value != null) {
Preconditions.checkState(
!env.valuesMissing(),
"Evaluation of %s returned non-null value but requested dependencies that weren't "
+ "computed yet (one of %s), NodeEntry: %s",
skyKey,
newDirectDeps,
state);
try {
evaluatorContext.getProgressReceiver().stateStarting(skyKey, NodeState.COMMIT);
if (maybeHandleRegisteringNewlyDiscoveredDepsForDoneEntry(
skyKey, state, oldDeps, env, evaluatorContext.keepGoing())) {
// A newly requested dep transitioned from done to dirty before this node finished.
// This node will be signalled again, and so we should return.
return;
}
env.setValue(value);
Set<SkyKey> reverseDeps = env.commitAndGetParents(state);
evaluatorContext.signalParentsAndEnqueueIfReady(
skyKey, reverseDeps, state.getVersion(), determineRestartPriority());
} finally {
evaluatorContext.getProgressReceiver().stateEnding(skyKey, NodeState.COMMIT);
}
return;
}
SkyKey childErrorKey = env.getDepErrorKey();
if (childErrorKey != null) {
Preconditions.checkState(
!evaluatorContext.keepGoing(), "%s %s %s", skyKey, state, childErrorKey);
// We encountered a child error in noKeepGoing mode, so we want to fail fast. But we first
// need to add the edge between the current node and the child error it requested so that
// error bubbling can occur. Note that this edge will subsequently be removed during graph
// cleaning (since the current node will never be committed to the graph).
NodeEntry childErrorEntry =
Preconditions.checkNotNull(
graph.get(skyKey, Reason.OTHER, childErrorKey),
"skyKey: %s, state: %s childErrorKey: %s",
skyKey,
state,
childErrorKey);
if (newDirectDeps.contains(childErrorKey)) {
// Add this dep if it was just requested. In certain rare race conditions (see
// MemoizingEvaluatorTest.cachedErrorCausesRestart) this dep may have already been
// requested.
state.addTemporaryDirectDeps(GroupedListHelper.create(childErrorKey));
DependencyState childErrorState;
if (oldDeps.contains(childErrorKey)) {
childErrorState = childErrorEntry.checkIfDoneForDirtyReverseDep(skyKey);
} else {
childErrorState = childErrorEntry.addReverseDepAndCheckIfDone(skyKey);
}
if (childErrorState != DependencyState.DONE) {
// The child in error may have transitioned from done to dirty between when this node
// discovered the error and now. Notify the graph inconsistency receiver so that we
// can crash if that's unexpected.
// We don't enqueue the child, even if it returns NEEDS_SCHEDULING, because we are
// about to shut down evaluation.
evaluatorContext
.getGraphInconsistencyReceiver()
.noteInconsistencyAndMaybeThrow(
skyKey,
ImmutableList.of(childErrorKey),
Inconsistency.BUILDING_PARENT_FOUND_UNDONE_CHILD);
}
}
SkyValue childErrorInfoMaybe =
Preconditions.checkNotNull(
env.maybeGetValueFromErrorOrDeps(childErrorKey),
"dep error found but then lost while building: %s %s",
skyKey,
childErrorKey);
ErrorInfo childErrorInfo =
Preconditions.checkNotNull(
ValueWithMetadata.getMaybeErrorInfo(childErrorInfoMaybe),
"dep error found but then wasn't an error while building: %s %s %s",
skyKey,
childErrorKey,
childErrorInfoMaybe);
evaluatorContext.getVisitor().preventNewEvaluations();
// TODO(b/166268889): Remove when fixed.
if (childErrorInfo.getException() instanceof IOException) {
logger.atInfo().withCause(childErrorInfo.getException()).log(
"Child %s with IOException forced abort of %s", childErrorKey, skyKey);
}
throw SchedulerException.ofError(childErrorInfo, childErrorKey, ImmutableSet.of(skyKey));
}
// TODO(bazel-team): This code is not safe to interrupt, because we would lose the state in
// newDirectDeps.
// TODO(bazel-team): An ill-behaved SkyFunction can throw us into an infinite loop where we
// add more dependencies on every run. [skyframe-core]
// Add all the newly requested dependencies to the temporary direct deps. Note that
// newDirectDeps does not contain any elements in common with the already existing temporary
// direct deps. uniqueNewDeps will be the set of unique keys contained in newDirectDeps.
Set<SkyKey> uniqueNewDeps = state.addTemporaryDirectDeps(newDirectDeps);
List<ListenableFuture<?>> externalDeps = env.externalDeps;
// If there were no newly requested dependencies, at least one of them was in error or there
// is a bug in the SkyFunction implementation. The environment has collected its errors, so
// we just order it to be built.
if (uniqueNewDeps.isEmpty() && externalDeps == null) {
// TODO(bazel-team): This means a bug in the SkyFunction. What to do?
Preconditions.checkState(
!env.getChildErrorInfos().isEmpty(),
"Evaluation of SkyKey failed and no dependencies were requested: %s %s",
skyKey,
state);
Preconditions.checkState(
evaluatorContext.keepGoing(),
"nokeep_going evaluation should have failed on first child error: %s %s %s",
skyKey,
state,
env.getChildErrorInfos());
// If the child error was catastrophic, committing this parent to the graph is not
// necessary, but since we don't do error bubbling in catastrophes, it doesn't violate any
// invariants either.
Set<SkyKey> reverseDeps = env.commitAndGetParents(state);
evaluatorContext.signalParentsAndEnqueueIfReady(
skyKey, reverseDeps, state.getVersion(), determineRestartPriority());
return;
}
// If there are external deps, we register that fact on the NodeEntry before we enqueue
// child nodes in order to prevent the current node from being re-enqueued between here and
// the call to registerExternalDeps below.
if (externalDeps != null) {
state.addExternalDep();
}
// We want to split apart the dependencies that existed for this node the last time we did
// an evaluation and those that were introduced in this evaluation. To be clear, the prefix
// "newDeps" refers to newly discovered this time around after a SkyFunction#compute call
// and not to be confused with the oldDeps variable which refers to the last evaluation,
// (ie) a prior call to ParallelEvaluator#eval).
Set<SkyKey> newDepsThatWerentInTheLastEvaluation = Sets.difference(uniqueNewDeps, oldDeps);
Set<SkyKey> newDepsThatWereInTheLastEvaluation =
Sets.difference(uniqueNewDeps, newDepsThatWerentInTheLastEvaluation);
int childEvaluationPriority = determineChildPriority();
InterruptibleSupplier<Map<SkyKey, ? extends NodeEntry>>
newDepsThatWerentInTheLastEvaluationNodes =
graph.createIfAbsentBatchAsync(
skyKey, Reason.RDEP_ADDITION, newDepsThatWerentInTheLastEvaluation);
handleKnownChildrenForDirtyNode(
newDepsThatWereInTheLastEvaluation,
graph.getBatch(skyKey, Reason.ENQUEUING_CHILD, newDepsThatWereInTheLastEvaluation),
state,
childEvaluationPriority,
/*enqueueParentIfReady=*/ true);
// Due to multi-threading, this can potentially cause the current node to be re-enqueued if
// all 'new' children of this node are already done. Therefore, there should not be any
// code after this loop, as it would potentially race with the re-evaluation in another
// thread.
for (Map.Entry<SkyKey, ? extends NodeEntry> e :
newDepsThatWerentInTheLastEvaluationNodes.get().entrySet()) {
SkyKey newDirectDep = e.getKey();
NodeEntry newDirectDepEntry = e.getValue();
enqueueChild(
skyKey,
state,
newDirectDep,
newDirectDepEntry,
/*depAlreadyExists=*/ false,
childEvaluationPriority,
/*enqueueParentIfReady=*/ true);
}
if (externalDeps != null) {
// This can cause the current node to be re-enqueued if all futures are already done.
// This is an exception to the rule above that there must not be code below the for
// loop. It is safe because we call state.addExternalDep above, which prevents
// re-enqueueing of the current node in the above loop if externalDeps != null.
evaluatorContext
.getVisitor()
.registerExternalDeps(skyKey, state, externalDeps, determineRestartPriority());
}
// Do not put any code here! Any code here can race with a re-evaluation of this same node
// in another thread.
} catch (InterruptedException ie) {
// The current thread can be interrupted at various places during evaluation or while
// committing the result in this method. Since we only register the future(s) with the
// underlying AbstractQueueVisitor in the registerExternalDeps call above, we have to make
// sure that any known futures are correctly canceled if we do not reach that call. Note
// that it is safe to cancel a future multiple times.
cancelExternalDeps(env);
// InterruptedException cannot be thrown by Runnable.run, so we must wrap it.
// Interrupts can be caught by both the Evaluator and the AbstractQueueVisitor.
// The former will unwrap the IE and propagate it as is; the latter will throw a new IE.
throw SchedulerException.ofInterruption(ie, skyKey);
}
}
private void cancelExternalDeps(SkyFunctionEnvironment env) {
if (env != null && env.externalDeps != null) {
for (ListenableFuture<?> future : env.externalDeps) {
future.cancel(/*mayInterruptIfRunning=*/ true);
}
}
}
private String prepareCrashMessage(SkyKey skyKey, Iterable<SkyKey> reverseDeps) {
StringBuilder reverseDepDump = new StringBuilder();
for (SkyKey key : reverseDeps) {
if (reverseDepDump.length() > MAX_REVERSEDEP_DUMP_LENGTH) {
reverseDepDump.append(", ...");
break;
}
if (reverseDepDump.length() > 0) {
reverseDepDump.append(", ");
}
reverseDepDump.append("'");
reverseDepDump.append(key.toString());
reverseDepDump.append("'");
}
return String.format(
"Unrecoverable error while evaluating node '%s' (requested by nodes %s)",
skyKey, reverseDepDump);
}
private static final int MAX_REVERSEDEP_DUMP_LENGTH = 1000;
}
protected void replay(ValueWithMetadata valueWithMetadata) {
// Replaying actions is done on a small number of nodes, but potentially over a large dependency
// graph. Under those conditions, using the regular NestedSet flattening with .toList() is more
// efficient than using NestedSetVisitor's custom traversal logic.
evaluatorContext
.getReplayingNestedSetPostableVisitor()
.visit(valueWithMetadata.getTransitivePostables().toList());
evaluatorContext
.getReplayingNestedSetEventVisitor()
.visit(valueWithMetadata.getTransitiveEvents().toList());
}
/**
* If {@code returnedValue} is a {@link Restart} value, then {@code entry} will be reset, and the
* other nodes specified by {@code returnedValue.rewindGraph()} will be marked changed via
* postorder DFS.
*
* <p>{@code returnedValue.rewindGraph()} must be empty or must contain {@code key}.
*
* <p>TODO(b/123993876): this should verify that edges in rewindGraph correspond to deps in the
* Skyframe graph. Will require a safe way of requesting deps for nodes which may not be done.
*
* @return {@code returnedValue instanceof Restart}
*/
// Nodes must be marked changed via postorder DFS. To see why, suppose we have this graph:
//
// FailedNode SomeOtherRdepOfR1
// | /
// | -----
// | /
// R1
// |
// R2
//
// Suppose FailedNode (FN) fails and requires that R1 and R2 must be dirtied and run again.
// Suppose they aren't dirtied via postorder DFS, so R1 is dirtied first.
//
// Then, the evaluation thread working on dirtying these nodes is suspended.
//
// On a separate evaluation thread, SomeOtherRdepOfR1 requests R1. R1 is scheduled for evaluation,
// checks its dep R2, and because R2 is done, R1 completes without scheduling R2 for evaluation.
//
// Then, the evaluation thread working on dirtying these nodes continues its work. It dirties
// R2 and schedules FN for evaluation.
//
// When FN next evaluates, it requests R1, and because R1 is done, R2 is not scheduled for
// evaluation, contrary to FN's expectations.
private boolean maybeHandleRestart(SkyKey key, NodeEntry entry, SkyValue returnedValue)
throws InterruptedException {
if (!(returnedValue instanceof Restart)) {
return false;
}
ImmutableGraph<SkyKey> rewindGraph = ((Restart) returnedValue).rewindGraph();
if (rewindGraph.nodes().isEmpty()) {
restart(key, entry);
return true;
}
Preconditions.checkArgument(
rewindGraph.nodes().contains(key),
"rewindGraph must contain the key for the failed evaluation if it's not empty. key: %s, "
+ "rewindGraph: %s",
key,
rewindGraph);
ImmutableList.Builder<SkyKey> builder = ImmutableList.builder();
for (SkyKey k : Traverser.forGraph(rewindGraph).depthFirstPostOrder(key)) {
if (!k.equals(key)) {
builder.add(k);
}
}
ImmutableList<SkyKey> additionalKeysToRestart = builder.build();
if (!additionalKeysToRestart.isEmpty()) {
evaluatorContext
.getGraphInconsistencyReceiver()
.noteInconsistencyAndMaybeThrow(
key, additionalKeysToRestart, Inconsistency.PARENT_FORCE_REBUILD_OF_CHILD);
}
Map<SkyKey, ? extends NodeEntry> additionalNodesToRestart =
evaluatorContext.getBatchValues(key, Reason.INVALIDATION, additionalKeysToRestart);
ArrayList<SkyKey> missingNodes = null;
for (SkyKey keyToRestart : additionalKeysToRestart) {
NodeEntry restartEntry = additionalNodesToRestart.get(keyToRestart);
if (restartEntry == null) {
if (missingNodes == null) {
missingNodes = new ArrayList<>();
}
missingNodes.add(keyToRestart);
continue;
}
// Nodes are marked "force-rebuild" to ensure that they run, and to allow them to evaluate to
// a different value than before, even if their versions remain the same.
if (restartEntry.markDirty(DirtyType.FORCE_REBUILD) != null) {
evaluatorContext
.getProgressReceiver()
.invalidated(keyToRestart, EvaluationProgressReceiver.InvalidationState.DIRTY);
}
}
if (missingNodes != null) {
evaluatorContext
.getGraphInconsistencyReceiver()
.noteInconsistencyAndMaybeThrow(
key, missingNodes, Inconsistency.PARENT_FORCE_REBUILD_OF_MISSING_CHILD);
}
// TODO(b/19539699): rdeps of children have to be handled here. If the graph does not keep
// edges, nothing has to be done, since there are no reverse deps to keep consistent. If the
// graph keeps edges, it's a harder problem. The reverse deps could just be removed, but in the
// case that this node is dirty, the deps shouldn't be removed, they should just be transformed
// back to "known reverse deps" from "reverse deps declared during this evaluation" (the inverse
// of NodeEntry#checkIfDoneForDirtyReverseDep). Such a method doesn't currently exist, but
// could.
restart(key, entry);
return true;
}
private void restart(SkyKey key, NodeEntry entry) {
evaluatorContext
.getGraphInconsistencyReceiver()
.noteInconsistencyAndMaybeThrow(key, /*otherKeys=*/ null, Inconsistency.RESET_REQUESTED);
entry.resetForRestartFromScratch();
}
void propagateEvaluatorContextCrashIfAny() {
if (!evaluatorContext.getVisitor().getCrashes().isEmpty()) {
evaluatorContext
.getReporter()
.handle(Event.error("Crashes detected: " + evaluatorContext.getVisitor().getCrashes()));
throw Preconditions.checkNotNull(
Iterables.getFirst(evaluatorContext.getVisitor().getCrashes(), null));
}
}
static void propagateInterruption(SchedulerException e) throws InterruptedException {
boolean mustThrowInterrupt = Thread.interrupted();
Throwables.propagateIfPossible(e.getCause(), InterruptedException.class);
if (mustThrowInterrupt) {
// As per the contract of AbstractQueueVisitor#work, if an unchecked exception is thrown and
// the build is interrupted, the thrown exception is what will be rethrown. Since the user
// presumably wanted to interrupt the build, we ignore the thrown SchedulerException (which
// doesn't indicate a programming bug) and throw an InterruptedException.
throw new InterruptedException();
}
}
/**
* Add any newly discovered deps that were registered during the run of a SkyFunction that
* finished by returning a value or throwing an error. SkyFunctions may throw errors even if all
* their deps were not provided -- we trust that a SkyFunction might know it should throw an error
* even if not all of its requested deps are done. However, that means we're assuming the
* SkyFunction would throw that same error if all of its requested deps were done. Unfortunately,
* there is no way to enforce that condition.
*
* <p>Returns {@code true} if any newly discovered dep is dirty when this node registers itself as
* an rdep and if one of those dirty deps will schedule this node for evaluation.
*
* <p>This can happen if a newly discovered dep transitions from done to dirty between when this
* node's evaluation accessed the dep's value and here. Adding this node as an rdep of that dep
* (or checking that this node is an rdep of that dep) will cause this node to be signalled when
* that dep completes.
*
* <p>If this returns {@code true}, this node should not actually finish, and this evaluation
* attempt should make no changes to the node after this method returns, because a completing dep
* may schedule a new evaluation attempt at any time.
*/
private boolean maybeHandleRegisteringNewlyDiscoveredDepsForDoneEntry(
SkyKey skyKey,
NodeEntry entry,
ImmutableSet<SkyKey> oldDeps,
SkyFunctionEnvironment env,
boolean keepGoing)
throws InterruptedException {
Iterator<SkyKey> it = env.getNewlyRequestedDeps().iterator();
if (!it.hasNext()) {
return false;
}
// We don't expect any unfinished deps in a keep-going build.
if (!keepGoing) {
env.removeUndoneNewlyRequestedDeps();
}
Set<SkyKey> uniqueNewDeps = entry.addTemporaryDirectDeps(env.getNewlyRequestedDeps());
Set<SkyKey> newlyAddedNewDeps = Sets.difference(uniqueNewDeps, oldDeps);
Set<SkyKey> previouslyRegisteredNewDeps = Sets.difference(uniqueNewDeps, newlyAddedNewDeps);
InterruptibleSupplier<Map<SkyKey, ? extends NodeEntry>> newlyAddedNewDepNodes =
graph.getBatchAsync(skyKey, Reason.RDEP_ADDITION, newlyAddedNewDeps);
// Dep entries in the following two loops may not be done, but they must be present. If the
// graph permits an already declared child missing, we recreate the entry if necessary. In a
// keep-going build, we normally expect all deps to be done. In a non-keep-going build, if
// env.newlyRequestedDeps contained a key for a node that wasn't done, then it would have been
// removed via removeUndoneNewlyRequestedDeps() just above this loop. However, with
// intra-evaluation dirtying, a dep may not be done.
boolean dirtyDepFound = false;
boolean selfSignalled = false;
Map<SkyKey, ? extends NodeEntry> previouslyRegisteredEntries =
graph.getBatch(skyKey, Reason.SIGNAL_DEP, previouslyRegisteredNewDeps);
for (SkyKey newDep : previouslyRegisteredNewDeps) {
NodeEntry depEntry =
getOrRecreateDepEntry(newDep, previouslyRegisteredEntries, skyKey, Reason.SIGNAL_DEP);
DependencyState triState = depEntry.checkIfDoneForDirtyReverseDep(skyKey);
switch (maybeHandleUndoneDepForDoneEntry(entry, depEntry, triState, skyKey, newDep)) {
case DEP_DONE_SELF_SIGNALLED:
selfSignalled = true;
break;
case DEP_DONE_SELF_NOT_SIGNALLED:
break;
case DEP_NOT_DONE:
dirtyDepFound = true;
break;
}
}
for (SkyKey newDep : newlyAddedNewDeps) {
NodeEntry depEntry =
getOrRecreateDepEntry(newDep, newlyAddedNewDepNodes.get(), skyKey, Reason.RDEP_ADDITION);
DependencyState triState = depEntry.addReverseDepAndCheckIfDone(skyKey);
switch (maybeHandleUndoneDepForDoneEntry(entry, depEntry, triState, skyKey, newDep)) {
case DEP_DONE_SELF_SIGNALLED:
selfSignalled = true;
break;
case DEP_DONE_SELF_NOT_SIGNALLED:
break;
case DEP_NOT_DONE:
dirtyDepFound = true;
break;
}
}
Preconditions.checkState(
selfSignalled || dirtyDepFound || uniqueNewDeps.isEmpty(),
"%s %s %s %s",
skyKey,
entry,
newlyAddedNewDeps,
previouslyRegisteredNewDeps);
return !selfSignalled;
}
/**
* Returns a {@link NodeEntry} for {@code depKey}.
*
* <p>If {@code depKey} is present in {@code depEntries}, its corresponding entry is returned.
* Otherwise, if the evaluator permits {@link Inconsistency#ALREADY_DECLARED_CHILD_MISSING}, the
* entry will be recreated.
*/
private NodeEntry getOrRecreateDepEntry(
SkyKey depKey, Map<SkyKey, ? extends NodeEntry> depEntries, SkyKey requestor, Reason reason)
throws InterruptedException {
NodeEntry depEntry = depEntries.get(depKey);
if (depEntry == null) {
List<SkyKey> missing = ImmutableList.of(depKey);
evaluatorContext
.getGraphInconsistencyReceiver()
.noteInconsistencyAndMaybeThrow(
depKey, missing, Inconsistency.ALREADY_DECLARED_CHILD_MISSING);
depEntry =
Preconditions.checkNotNull(
graph.createIfAbsentBatch(requestor, reason, missing).get(depKey), depKey);
}
return depEntry;
}
private enum MaybeHandleUndoneDepResult {
DEP_DONE_SELF_SIGNALLED,
DEP_DONE_SELF_NOT_SIGNALLED,
DEP_NOT_DONE
}
/**
* Returns {@link MaybeHandleUndoneDepResult#DEP_NOT_DONE} if {@code depEntry} was not done.
* Notifies the {@link GraphInconsistencyReceiver} if so. Schedules {@code depEntry} for
* evaluation if necessary.
*
* <p>If {@code depEntry} was done, then this calls {@code entry.signalDep}.
*
* <p>If the call to {@code #signalDep} returns false, this returns {@link
* MaybeHandleUndoneDepResult#DEP_DONE_SELF_NOT_SIGNALLED}.
*
* <p>If the call to {@code #signalDep} returns true, this returns {@link
* MaybeHandleUndoneDepResult#DEP_DONE_SELF_SIGNALLED}. This will happen for the last new dep if
* all of them were done. It can also happen if some new deps weren't done but they all signal
* {@code entry} before {@link #maybeHandleRegisteringNewlyDiscoveredDepsForDoneEntry} finishes
* checking deps.
*/
private MaybeHandleUndoneDepResult maybeHandleUndoneDepForDoneEntry(
NodeEntry entry, NodeEntry depEntry, DependencyState triState, SkyKey skyKey, SkyKey depKey) {
if (triState == DependencyState.DONE) {
return entry.signalDep(depEntry.getVersion(), depKey)
? MaybeHandleUndoneDepResult.DEP_DONE_SELF_SIGNALLED
: MaybeHandleUndoneDepResult.DEP_DONE_SELF_NOT_SIGNALLED;
}
// The dep may have transitioned from done to dirty between when this node read its value and
// now. Notify the graph inconsistency receiver so that we can crash if that's unexpected. We
// schedule the dep if it needs scheduling, because nothing else can if we don't.
evaluatorContext
.getGraphInconsistencyReceiver()
.noteInconsistencyAndMaybeThrow(
skyKey, ImmutableList.of(depKey), Inconsistency.BUILDING_PARENT_FOUND_UNDONE_CHILD);
if (triState == DependencyState.NEEDS_SCHEDULING) {
evaluatorContext.getVisitor().enqueueEvaluation(depKey, FIRST_RESTART_PRIORITY);
}
return MaybeHandleUndoneDepResult.DEP_NOT_DONE;
}
/**
* Return true if the entry does not need to be re-evaluated this build. The entry will need to be
* re-evaluated if it is not done, but also if it was not completely evaluated last build and this
* build is keepGoing.
*/
static boolean isDoneForBuild(@Nullable NodeEntry entry) {
return entry != null && entry.isDone();
}
}