|  | /* adler32.c -- compute the Adler-32 checksum of a data stream | 
|  | * Copyright (C) 1995-2011, 2016 Mark Adler | 
|  | * For conditions of distribution and use, see copyright notice in zlib.h | 
|  | */ | 
|  |  | 
|  | /* @(#) $Id$ */ | 
|  |  | 
|  | #include "zutil.h" | 
|  |  | 
|  | local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); | 
|  |  | 
|  | #define BASE 65521U     /* largest prime smaller than 65536 */ | 
|  | #define NMAX 5552 | 
|  | /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ | 
|  |  | 
|  | #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;} | 
|  | #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1); | 
|  | #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2); | 
|  | #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4); | 
|  | #define DO16(buf)   DO8(buf,0); DO8(buf,8); | 
|  |  | 
|  | /* use NO_DIVIDE if your processor does not do division in hardware -- | 
|  | try it both ways to see which is faster */ | 
|  | #ifdef NO_DIVIDE | 
|  | /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 | 
|  | (thank you to John Reiser for pointing this out) */ | 
|  | #  define CHOP(a) \ | 
|  | do { \ | 
|  | unsigned long tmp = a >> 16; \ | 
|  | a &= 0xffffUL; \ | 
|  | a += (tmp << 4) - tmp; \ | 
|  | } while (0) | 
|  | #  define MOD28(a) \ | 
|  | do { \ | 
|  | CHOP(a); \ | 
|  | if (a >= BASE) a -= BASE; \ | 
|  | } while (0) | 
|  | #  define MOD(a) \ | 
|  | do { \ | 
|  | CHOP(a); \ | 
|  | MOD28(a); \ | 
|  | } while (0) | 
|  | #  define MOD63(a) \ | 
|  | do { /* this assumes a is not negative */ \ | 
|  | z_off64_t tmp = a >> 32; \ | 
|  | a &= 0xffffffffL; \ | 
|  | a += (tmp << 8) - (tmp << 5) + tmp; \ | 
|  | tmp = a >> 16; \ | 
|  | a &= 0xffffL; \ | 
|  | a += (tmp << 4) - tmp; \ | 
|  | tmp = a >> 16; \ | 
|  | a &= 0xffffL; \ | 
|  | a += (tmp << 4) - tmp; \ | 
|  | if (a >= BASE) a -= BASE; \ | 
|  | } while (0) | 
|  | #else | 
|  | #  define MOD(a) a %= BASE | 
|  | #  define MOD28(a) a %= BASE | 
|  | #  define MOD63(a) a %= BASE | 
|  | #endif | 
|  |  | 
|  | /* ========================================================================= */ | 
|  | uLong ZEXPORT adler32_z(adler, buf, len) | 
|  | uLong adler; | 
|  | const Bytef *buf; | 
|  | z_size_t len; | 
|  | { | 
|  | unsigned long sum2; | 
|  | unsigned n; | 
|  |  | 
|  | /* split Adler-32 into component sums */ | 
|  | sum2 = (adler >> 16) & 0xffff; | 
|  | adler &= 0xffff; | 
|  |  | 
|  | /* in case user likes doing a byte at a time, keep it fast */ | 
|  | if (len == 1) { | 
|  | adler += buf[0]; | 
|  | if (adler >= BASE) | 
|  | adler -= BASE; | 
|  | sum2 += adler; | 
|  | if (sum2 >= BASE) | 
|  | sum2 -= BASE; | 
|  | return adler | (sum2 << 16); | 
|  | } | 
|  |  | 
|  | /* initial Adler-32 value (deferred check for len == 1 speed) */ | 
|  | if (buf == Z_NULL) | 
|  | return 1L; | 
|  |  | 
|  | /* in case short lengths are provided, keep it somewhat fast */ | 
|  | if (len < 16) { | 
|  | while (len--) { | 
|  | adler += *buf++; | 
|  | sum2 += adler; | 
|  | } | 
|  | if (adler >= BASE) | 
|  | adler -= BASE; | 
|  | MOD28(sum2);            /* only added so many BASE's */ | 
|  | return adler | (sum2 << 16); | 
|  | } | 
|  |  | 
|  | /* do length NMAX blocks -- requires just one modulo operation */ | 
|  | while (len >= NMAX) { | 
|  | len -= NMAX; | 
|  | n = NMAX / 16;          /* NMAX is divisible by 16 */ | 
|  | do { | 
|  | DO16(buf);          /* 16 sums unrolled */ | 
|  | buf += 16; | 
|  | } while (--n); | 
|  | MOD(adler); | 
|  | MOD(sum2); | 
|  | } | 
|  |  | 
|  | /* do remaining bytes (less than NMAX, still just one modulo) */ | 
|  | if (len) {                  /* avoid modulos if none remaining */ | 
|  | while (len >= 16) { | 
|  | len -= 16; | 
|  | DO16(buf); | 
|  | buf += 16; | 
|  | } | 
|  | while (len--) { | 
|  | adler += *buf++; | 
|  | sum2 += adler; | 
|  | } | 
|  | MOD(adler); | 
|  | MOD(sum2); | 
|  | } | 
|  |  | 
|  | /* return recombined sums */ | 
|  | return adler | (sum2 << 16); | 
|  | } | 
|  |  | 
|  | /* ========================================================================= */ | 
|  | uLong ZEXPORT adler32(adler, buf, len) | 
|  | uLong adler; | 
|  | const Bytef *buf; | 
|  | uInt len; | 
|  | { | 
|  | return adler32_z(adler, buf, len); | 
|  | } | 
|  |  | 
|  | /* ========================================================================= */ | 
|  | local uLong adler32_combine_(adler1, adler2, len2) | 
|  | uLong adler1; | 
|  | uLong adler2; | 
|  | z_off64_t len2; | 
|  | { | 
|  | unsigned long sum1; | 
|  | unsigned long sum2; | 
|  | unsigned rem; | 
|  |  | 
|  | /* for negative len, return invalid adler32 as a clue for debugging */ | 
|  | if (len2 < 0) | 
|  | return 0xffffffffUL; | 
|  |  | 
|  | /* the derivation of this formula is left as an exercise for the reader */ | 
|  | MOD63(len2);                /* assumes len2 >= 0 */ | 
|  | rem = (unsigned)len2; | 
|  | sum1 = adler1 & 0xffff; | 
|  | sum2 = rem * sum1; | 
|  | MOD(sum2); | 
|  | sum1 += (adler2 & 0xffff) + BASE - 1; | 
|  | sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; | 
|  | if (sum1 >= BASE) sum1 -= BASE; | 
|  | if (sum1 >= BASE) sum1 -= BASE; | 
|  | if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1); | 
|  | if (sum2 >= BASE) sum2 -= BASE; | 
|  | return sum1 | (sum2 << 16); | 
|  | } | 
|  |  | 
|  | /* ========================================================================= */ | 
|  | uLong ZEXPORT adler32_combine(adler1, adler2, len2) | 
|  | uLong adler1; | 
|  | uLong adler2; | 
|  | z_off_t len2; | 
|  | { | 
|  | return adler32_combine_(adler1, adler2, len2); | 
|  | } | 
|  |  | 
|  | uLong ZEXPORT adler32_combine64(adler1, adler2, len2) | 
|  | uLong adler1; | 
|  | uLong adler2; | 
|  | z_off64_t len2; | 
|  | { | 
|  | return adler32_combine_(adler1, adler2, len2); | 
|  | } |