blob: c638ce76eedbdec001f85e5ad4aea19b285dfa7e [file] [log] [blame]
/*
*
* Copyright 2018 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <grpc/support/port_platform.h>
#include "src/core/tsi/grpc_shadow_boringssl.h"
#include "src/core/tsi/alts/crypt/gsec.h"
#include <openssl/bio.h>
#include <openssl/buffer.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <string.h>
#include <grpc/support/alloc.h>
constexpr size_t kKdfKeyLen = 32;
constexpr size_t kKdfCounterLen = 6;
constexpr size_t kKdfCounterOffset = 2;
constexpr size_t kRekeyAeadKeyLen = kAes128GcmKeyLength;
/* Struct for additional data required if rekeying is enabled. */
struct gsec_aes_gcm_aead_rekey_data {
uint8_t kdf_counter[kKdfCounterLen];
uint8_t nonce_mask[kAesGcmNonceLength];
};
/* Main struct for AES_GCM crypter interface. */
struct gsec_aes_gcm_aead_crypter {
gsec_aead_crypter crypter;
size_t key_length;
size_t nonce_length;
size_t tag_length;
uint8_t* key;
gsec_aes_gcm_aead_rekey_data* rekey_data;
EVP_CIPHER_CTX* ctx;
};
static char* aes_gcm_get_openssl_errors() {
BIO* bio = BIO_new(BIO_s_mem());
ERR_print_errors(bio);
BUF_MEM* mem = nullptr;
char* error_msg = nullptr;
BIO_get_mem_ptr(bio, &mem);
if (mem != nullptr) {
error_msg = static_cast<char*>(gpr_malloc(mem->length + 1));
memcpy(error_msg, mem->data, mem->length);
error_msg[mem->length] = '\0';
}
BIO_free_all(bio);
return error_msg;
}
static void aes_gcm_format_errors(const char* error_msg, char** error_details) {
if (error_details == nullptr) {
return;
}
unsigned long error = ERR_get_error();
if (error == 0 && error_msg != nullptr) {
*error_details = static_cast<char*>(gpr_malloc(strlen(error_msg) + 1));
memcpy(*error_details, error_msg, strlen(error_msg) + 1);
return;
}
char* openssl_errors = aes_gcm_get_openssl_errors();
if (openssl_errors != nullptr && error_msg != nullptr) {
size_t len = strlen(error_msg) + strlen(openssl_errors) + 2; /* ", " */
*error_details = static_cast<char*>(gpr_malloc(len + 1));
snprintf(*error_details, len + 1, "%s, %s", error_msg, openssl_errors);
gpr_free(openssl_errors);
}
}
static grpc_status_code gsec_aes_gcm_aead_crypter_max_ciphertext_and_tag_length(
const gsec_aead_crypter* crypter, size_t plaintext_length,
size_t* max_ciphertext_and_tag_length, char** error_details) {
if (max_ciphertext_and_tag_length == nullptr) {
aes_gcm_format_errors("max_ciphertext_and_tag_length is nullptr.",
error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
gsec_aes_gcm_aead_crypter* aes_gcm_crypter =
reinterpret_cast<gsec_aes_gcm_aead_crypter*>(
const_cast<gsec_aead_crypter*>(crypter));
*max_ciphertext_and_tag_length =
plaintext_length + aes_gcm_crypter->tag_length;
return GRPC_STATUS_OK;
}
static grpc_status_code gsec_aes_gcm_aead_crypter_max_plaintext_length(
const gsec_aead_crypter* crypter, size_t ciphertext_and_tag_length,
size_t* max_plaintext_length, char** error_details) {
if (max_plaintext_length == nullptr) {
aes_gcm_format_errors("max_plaintext_length is nullptr.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
gsec_aes_gcm_aead_crypter* aes_gcm_crypter =
reinterpret_cast<gsec_aes_gcm_aead_crypter*>(
const_cast<gsec_aead_crypter*>(crypter));
if (ciphertext_and_tag_length < aes_gcm_crypter->tag_length) {
*max_plaintext_length = 0;
aes_gcm_format_errors(
"ciphertext_and_tag_length is smaller than tag_length.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
*max_plaintext_length =
ciphertext_and_tag_length - aes_gcm_crypter->tag_length;
return GRPC_STATUS_OK;
}
static grpc_status_code gsec_aes_gcm_aead_crypter_nonce_length(
const gsec_aead_crypter* crypter, size_t* nonce_length,
char** error_details) {
if (nonce_length == nullptr) {
aes_gcm_format_errors("nonce_length is nullptr.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
gsec_aes_gcm_aead_crypter* aes_gcm_crypter =
reinterpret_cast<gsec_aes_gcm_aead_crypter*>(
const_cast<gsec_aead_crypter*>(crypter));
*nonce_length = aes_gcm_crypter->nonce_length;
return GRPC_STATUS_OK;
}
static grpc_status_code gsec_aes_gcm_aead_crypter_key_length(
const gsec_aead_crypter* crypter, size_t* key_length,
char** error_details) {
if (key_length == nullptr) {
aes_gcm_format_errors("key_length is nullptr.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
gsec_aes_gcm_aead_crypter* aes_gcm_crypter =
reinterpret_cast<gsec_aes_gcm_aead_crypter*>(
const_cast<gsec_aead_crypter*>(crypter));
*key_length = aes_gcm_crypter->key_length;
return GRPC_STATUS_OK;
}
static grpc_status_code gsec_aes_gcm_aead_crypter_tag_length(
const gsec_aead_crypter* crypter, size_t* tag_length,
char** error_details) {
if (tag_length == nullptr) {
aes_gcm_format_errors("tag_length is nullptr.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
gsec_aes_gcm_aead_crypter* aes_gcm_crypter =
reinterpret_cast<gsec_aes_gcm_aead_crypter*>(
const_cast<gsec_aead_crypter*>(crypter));
*tag_length = aes_gcm_crypter->tag_length;
return GRPC_STATUS_OK;
}
static void aes_gcm_mask_nonce(uint8_t* dst, const uint8_t* nonce,
const uint8_t* mask) {
uint64_t mask1;
uint32_t mask2;
memcpy(&mask1, mask, sizeof(mask1));
memcpy(&mask2, mask + sizeof(mask1), sizeof(mask2));
uint64_t nonce1;
uint32_t nonce2;
memcpy(&nonce1, nonce, sizeof(nonce1));
memcpy(&nonce2, nonce + sizeof(nonce1), sizeof(nonce2));
nonce1 ^= mask1;
nonce2 ^= mask2;
memcpy(dst, &nonce1, sizeof(nonce1));
memcpy(dst + sizeof(nonce1), &nonce2, sizeof(nonce2));
}
static grpc_status_code aes_gcm_derive_aead_key(uint8_t* dst,
const uint8_t* kdf_key,
const uint8_t* kdf_counter) {
unsigned char buf[EVP_MAX_MD_SIZE];
unsigned char ctr = 1;
#if OPENSSL_VERSION_NUMBER < 0x10100000L
HMAC_CTX hmac;
HMAC_CTX_init(&hmac);
if (!HMAC_Init_ex(&hmac, kdf_key, kKdfKeyLen, EVP_sha256(), nullptr) ||
!HMAC_Update(&hmac, kdf_counter, kKdfCounterLen) ||
!HMAC_Update(&hmac, &ctr, 1) || !HMAC_Final(&hmac, buf, nullptr)) {
HMAC_CTX_cleanup(&hmac);
return GRPC_STATUS_INTERNAL;
}
HMAC_CTX_cleanup(&hmac);
#else
HMAC_CTX* hmac = HMAC_CTX_new();
if (hmac == nullptr) {
return GRPC_STATUS_INTERNAL;
}
if (!HMAC_Init_ex(hmac, kdf_key, kKdfKeyLen, EVP_sha256(), nullptr) ||
!HMAC_Update(hmac, kdf_counter, kKdfCounterLen) ||
!HMAC_Update(hmac, &ctr, 1) || !HMAC_Final(hmac, buf, nullptr)) {
HMAC_CTX_free(hmac);
return GRPC_STATUS_INTERNAL;
}
HMAC_CTX_free(hmac);
#endif
memcpy(dst, buf, kRekeyAeadKeyLen);
return GRPC_STATUS_OK;
}
static grpc_status_code aes_gcm_rekey_if_required(
gsec_aes_gcm_aead_crypter* aes_gcm_crypter, const uint8_t* nonce,
char** error_details) {
// If rekey_data is nullptr, then rekeying is not supported and not required.
// If bytes 2-7 of kdf_counter differ from the (per message) nonce, then the
// encryption key is recomputed from a new kdf_counter to ensure that we don't
// encrypt more than 2^16 messages per encryption key (in each direction).
if (aes_gcm_crypter->rekey_data == nullptr ||
memcmp(aes_gcm_crypter->rekey_data->kdf_counter,
nonce + kKdfCounterOffset, kKdfCounterLen) == 0) {
return GRPC_STATUS_OK;
}
memcpy(aes_gcm_crypter->rekey_data->kdf_counter, nonce + kKdfCounterOffset,
kKdfCounterLen);
uint8_t aead_key[kRekeyAeadKeyLen];
if (aes_gcm_derive_aead_key(aead_key, aes_gcm_crypter->key,
aes_gcm_crypter->rekey_data->kdf_counter) !=
GRPC_STATUS_OK) {
aes_gcm_format_errors("Rekeying failed in key derivation.", error_details);
return GRPC_STATUS_INTERNAL;
}
if (!EVP_DecryptInit_ex(aes_gcm_crypter->ctx, nullptr, nullptr, aead_key,
nullptr)) {
aes_gcm_format_errors("Rekeying failed in context update.", error_details);
return GRPC_STATUS_INTERNAL;
}
return GRPC_STATUS_OK;
}
static grpc_status_code gsec_aes_gcm_aead_crypter_encrypt_iovec(
gsec_aead_crypter* crypter, const uint8_t* nonce, size_t nonce_length,
const struct iovec* aad_vec, size_t aad_vec_length,
const struct iovec* plaintext_vec, size_t plaintext_vec_length,
struct iovec ciphertext_vec, size_t* ciphertext_bytes_written,
char** error_details) {
gsec_aes_gcm_aead_crypter* aes_gcm_crypter =
reinterpret_cast<gsec_aes_gcm_aead_crypter*>(crypter);
// Input checks
if (nonce == nullptr) {
aes_gcm_format_errors("Nonce buffer is nullptr.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
if (kAesGcmNonceLength != nonce_length) {
aes_gcm_format_errors("Nonce buffer has the wrong length.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
if (aad_vec_length > 0 && aad_vec == nullptr) {
aes_gcm_format_errors("Non-zero aad_vec_length but aad_vec is nullptr.",
error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
if (plaintext_vec_length > 0 && plaintext_vec == nullptr) {
aes_gcm_format_errors(
"Non-zero plaintext_vec_length but plaintext_vec is nullptr.",
error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
if (ciphertext_bytes_written == nullptr) {
aes_gcm_format_errors("bytes_written is nullptr.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
*ciphertext_bytes_written = 0;
// rekey if required
if (aes_gcm_rekey_if_required(aes_gcm_crypter, nonce, error_details) !=
GRPC_STATUS_OK) {
return GRPC_STATUS_INTERNAL;
}
// mask nonce if required
const uint8_t* nonce_aead = nonce;
uint8_t nonce_masked[kAesGcmNonceLength];
if (aes_gcm_crypter->rekey_data != nullptr) {
aes_gcm_mask_nonce(nonce_masked, aes_gcm_crypter->rekey_data->nonce_mask,
nonce);
nonce_aead = nonce_masked;
}
// init openssl context
if (!EVP_EncryptInit_ex(aes_gcm_crypter->ctx, nullptr, nullptr, nullptr,
nonce_aead)) {
aes_gcm_format_errors("Initializing nonce failed", error_details);
return GRPC_STATUS_INTERNAL;
}
// process aad
size_t i;
for (i = 0; i < aad_vec_length; i++) {
const uint8_t* aad = static_cast<uint8_t*>(aad_vec[i].iov_base);
size_t aad_length = aad_vec[i].iov_len;
if (aad_length == 0) {
continue;
}
size_t aad_bytes_read = 0;
if (aad == nullptr) {
aes_gcm_format_errors("aad is nullptr.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
if (!EVP_EncryptUpdate(aes_gcm_crypter->ctx, nullptr,
reinterpret_cast<int*>(&aad_bytes_read), aad,
static_cast<int>(aad_length)) ||
aad_bytes_read != aad_length) {
aes_gcm_format_errors("Setting authenticated associated data failed",
error_details);
return GRPC_STATUS_INTERNAL;
}
}
uint8_t* ciphertext = static_cast<uint8_t*>(ciphertext_vec.iov_base);
size_t ciphertext_length = ciphertext_vec.iov_len;
if (ciphertext == nullptr) {
aes_gcm_format_errors("ciphertext is nullptr.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
// process plaintext
for (i = 0; i < plaintext_vec_length; i++) {
const uint8_t* plaintext = static_cast<uint8_t*>(plaintext_vec[i].iov_base);
size_t plaintext_length = plaintext_vec[i].iov_len;
if (plaintext == nullptr) {
if (plaintext_length == 0) {
continue;
}
aes_gcm_format_errors("plaintext is nullptr.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
if (ciphertext_length < plaintext_length) {
aes_gcm_format_errors(
"ciphertext is not large enough to hold the result.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
int bytes_written = 0;
int bytes_to_write = static_cast<int>(plaintext_length);
if (!EVP_EncryptUpdate(aes_gcm_crypter->ctx, ciphertext, &bytes_written,
plaintext, bytes_to_write)) {
aes_gcm_format_errors("Encrypting plaintext failed.", error_details);
return GRPC_STATUS_INTERNAL;
}
if (bytes_written > bytes_to_write) {
aes_gcm_format_errors("More bytes written than expected.", error_details);
return GRPC_STATUS_INTERNAL;
}
ciphertext += bytes_written;
ciphertext_length -= bytes_written;
}
int bytes_written_temp = 0;
if (!EVP_EncryptFinal_ex(aes_gcm_crypter->ctx, nullptr,
&bytes_written_temp)) {
aes_gcm_format_errors("Finalizing encryption failed.", error_details);
return GRPC_STATUS_INTERNAL;
}
if (bytes_written_temp != 0) {
aes_gcm_format_errors("Openssl wrote some unexpected bytes.",
error_details);
return GRPC_STATUS_INTERNAL;
}
if (ciphertext_length < kAesGcmTagLength) {
aes_gcm_format_errors("ciphertext is too small to hold a tag.",
error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
if (!EVP_CIPHER_CTX_ctrl(aes_gcm_crypter->ctx, EVP_CTRL_GCM_GET_TAG,
kAesGcmTagLength, ciphertext)) {
aes_gcm_format_errors("Writing tag failed.", error_details);
return GRPC_STATUS_INTERNAL;
}
ciphertext += kAesGcmTagLength;
ciphertext_length -= kAesGcmTagLength;
*ciphertext_bytes_written = ciphertext_vec.iov_len - ciphertext_length;
return GRPC_STATUS_OK;
}
static grpc_status_code gsec_aes_gcm_aead_crypter_decrypt_iovec(
gsec_aead_crypter* crypter, const uint8_t* nonce, size_t nonce_length,
const struct iovec* aad_vec, size_t aad_vec_length,
const struct iovec* ciphertext_vec, size_t ciphertext_vec_length,
struct iovec plaintext_vec, size_t* plaintext_bytes_written,
char** error_details) {
gsec_aes_gcm_aead_crypter* aes_gcm_crypter =
reinterpret_cast<gsec_aes_gcm_aead_crypter*>(
const_cast<gsec_aead_crypter*>(crypter));
if (nonce == nullptr) {
aes_gcm_format_errors("Nonce buffer is nullptr.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
if (kAesGcmNonceLength != nonce_length) {
aes_gcm_format_errors("Nonce buffer has the wrong length.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
if (aad_vec_length > 0 && aad_vec == nullptr) {
aes_gcm_format_errors("Non-zero aad_vec_length but aad_vec is nullptr.",
error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
if (ciphertext_vec_length > 0 && ciphertext_vec == nullptr) {
aes_gcm_format_errors(
"Non-zero plaintext_vec_length but plaintext_vec is nullptr.",
error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
// Compute the total length so we can ensure we don't pass the tag into
// EVP_decrypt.
size_t total_ciphertext_length = 0;
size_t i;
for (i = 0; i < ciphertext_vec_length; i++) {
total_ciphertext_length += ciphertext_vec[i].iov_len;
}
if (total_ciphertext_length < kAesGcmTagLength) {
aes_gcm_format_errors("ciphertext is too small to hold a tag.",
error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
if (plaintext_bytes_written == nullptr) {
aes_gcm_format_errors("bytes_written is nullptr.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
*plaintext_bytes_written = 0;
// rekey if required
if (aes_gcm_rekey_if_required(aes_gcm_crypter, nonce, error_details) !=
GRPC_STATUS_OK) {
aes_gcm_format_errors("Rekeying failed.", error_details);
return GRPC_STATUS_INTERNAL;
}
// mask nonce if required
const uint8_t* nonce_aead = nonce;
uint8_t nonce_masked[kAesGcmNonceLength];
if (aes_gcm_crypter->rekey_data != nullptr) {
aes_gcm_mask_nonce(nonce_masked, aes_gcm_crypter->rekey_data->nonce_mask,
nonce);
nonce_aead = nonce_masked;
}
// init openssl context
if (!EVP_DecryptInit_ex(aes_gcm_crypter->ctx, nullptr, nullptr, nullptr,
nonce_aead)) {
aes_gcm_format_errors("Initializing nonce failed.", error_details);
return GRPC_STATUS_INTERNAL;
}
// process aad
for (i = 0; i < aad_vec_length; i++) {
const uint8_t* aad = static_cast<uint8_t*>(aad_vec[i].iov_base);
size_t aad_length = aad_vec[i].iov_len;
if (aad_length == 0) {
continue;
}
size_t aad_bytes_read = 0;
if (aad == nullptr) {
aes_gcm_format_errors("aad is nullptr.", error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
if (!EVP_DecryptUpdate(aes_gcm_crypter->ctx, nullptr,
reinterpret_cast<int*>(&aad_bytes_read), aad,
static_cast<int>(aad_length)) ||
aad_bytes_read != aad_length) {
aes_gcm_format_errors("Setting authenticated associated data failed.",
error_details);
return GRPC_STATUS_INTERNAL;
}
}
// process ciphertext
uint8_t* plaintext = static_cast<uint8_t*>(plaintext_vec.iov_base);
size_t plaintext_length = plaintext_vec.iov_len;
if (plaintext_length > 0 && plaintext == nullptr) {
aes_gcm_format_errors(
"plaintext is nullptr, but plaintext_length is positive.",
error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
const uint8_t* ciphertext = nullptr;
size_t ciphertext_length = 0;
for (i = 0;
i < ciphertext_vec_length && total_ciphertext_length > kAesGcmTagLength;
i++) {
ciphertext = static_cast<uint8_t*>(ciphertext_vec[i].iov_base);
ciphertext_length = ciphertext_vec[i].iov_len;
if (ciphertext == nullptr) {
if (ciphertext_length == 0) {
continue;
}
aes_gcm_format_errors("ciphertext is nullptr.", error_details);
memset(plaintext_vec.iov_base, 0x00, plaintext_vec.iov_len);
return GRPC_STATUS_INVALID_ARGUMENT;
}
size_t bytes_written = 0;
size_t bytes_to_write = ciphertext_length;
// Don't include the tag
if (bytes_to_write > total_ciphertext_length - kAesGcmTagLength) {
bytes_to_write = total_ciphertext_length - kAesGcmTagLength;
}
if (plaintext_length < bytes_to_write) {
aes_gcm_format_errors(
"Not enough plaintext buffer to hold encrypted ciphertext.",
error_details);
return GRPC_STATUS_INVALID_ARGUMENT;
}
if (!EVP_DecryptUpdate(aes_gcm_crypter->ctx, plaintext,
reinterpret_cast<int*>(&bytes_written), ciphertext,
static_cast<int>(bytes_to_write))) {
aes_gcm_format_errors("Decrypting ciphertext failed.", error_details);
memset(plaintext_vec.iov_base, 0x00, plaintext_vec.iov_len);
return GRPC_STATUS_INTERNAL;
}
if (bytes_written > ciphertext_length) {
aes_gcm_format_errors("More bytes written than expected.", error_details);
memset(plaintext_vec.iov_base, 0x00, plaintext_vec.iov_len);
return GRPC_STATUS_INTERNAL;
}
ciphertext += bytes_written;
ciphertext_length -= bytes_written;
total_ciphertext_length -= bytes_written;
plaintext += bytes_written;
plaintext_length -= bytes_written;
}
if (total_ciphertext_length > kAesGcmTagLength) {
aes_gcm_format_errors(
"Not enough plaintext buffer to hold encrypted ciphertext.",
error_details);
memset(plaintext_vec.iov_base, 0x00, plaintext_vec.iov_len);
return GRPC_STATUS_INVALID_ARGUMENT;
}
uint8_t tag[kAesGcmTagLength];
uint8_t* tag_tmp = tag;
if (ciphertext_length > 0) {
memcpy(tag_tmp, ciphertext, ciphertext_length);
tag_tmp += ciphertext_length;
total_ciphertext_length -= ciphertext_length;
}
for (; i < ciphertext_vec_length; i++) {
ciphertext = static_cast<uint8_t*>(ciphertext_vec[i].iov_base);
ciphertext_length = ciphertext_vec[i].iov_len;
if (ciphertext == nullptr) {
if (ciphertext_length == 0) {
continue;
}
aes_gcm_format_errors("ciphertext is nullptr.", error_details);
memset(plaintext_vec.iov_base, 0x00, plaintext_vec.iov_len);
return GRPC_STATUS_INVALID_ARGUMENT;
}
memcpy(tag_tmp, ciphertext, ciphertext_length);
tag_tmp += ciphertext_length;
total_ciphertext_length -= ciphertext_length;
}
if (!EVP_CIPHER_CTX_ctrl(aes_gcm_crypter->ctx, EVP_CTRL_GCM_SET_TAG,
kAesGcmTagLength, reinterpret_cast<void*>(tag))) {
aes_gcm_format_errors("Setting tag failed.", error_details);
memset(plaintext_vec.iov_base, 0x00, plaintext_vec.iov_len);
return GRPC_STATUS_INTERNAL;
}
int bytes_written_temp = 0;
if (!EVP_DecryptFinal_ex(aes_gcm_crypter->ctx, nullptr,
&bytes_written_temp)) {
aes_gcm_format_errors("Checking tag failed.", error_details);
memset(plaintext_vec.iov_base, 0x00, plaintext_vec.iov_len);
return GRPC_STATUS_FAILED_PRECONDITION;
}
if (bytes_written_temp != 0) {
aes_gcm_format_errors("Openssl wrote some unexpected bytes.",
error_details);
memset(plaintext_vec.iov_base, 0x00, plaintext_vec.iov_len);
return GRPC_STATUS_INTERNAL;
}
*plaintext_bytes_written = plaintext_vec.iov_len - plaintext_length;
return GRPC_STATUS_OK;
}
static void gsec_aes_gcm_aead_crypter_destroy(gsec_aead_crypter* crypter) {
gsec_aes_gcm_aead_crypter* aes_gcm_crypter =
reinterpret_cast<gsec_aes_gcm_aead_crypter*>(
const_cast<gsec_aead_crypter*>(crypter));
gpr_free(aes_gcm_crypter->key);
gpr_free(aes_gcm_crypter->rekey_data);
EVP_CIPHER_CTX_free(aes_gcm_crypter->ctx);
}
static const gsec_aead_crypter_vtable vtable = {
gsec_aes_gcm_aead_crypter_encrypt_iovec,
gsec_aes_gcm_aead_crypter_decrypt_iovec,
gsec_aes_gcm_aead_crypter_max_ciphertext_and_tag_length,
gsec_aes_gcm_aead_crypter_max_plaintext_length,
gsec_aes_gcm_aead_crypter_nonce_length,
gsec_aes_gcm_aead_crypter_key_length,
gsec_aes_gcm_aead_crypter_tag_length,
gsec_aes_gcm_aead_crypter_destroy};
static grpc_status_code aes_gcm_new_evp_cipher_ctx(
gsec_aes_gcm_aead_crypter* aes_gcm_crypter, char** error_details) {
const EVP_CIPHER* cipher = nullptr;
bool is_rekey = aes_gcm_crypter->rekey_data != nullptr;
switch (is_rekey ? kRekeyAeadKeyLen : aes_gcm_crypter->key_length) {
case kAes128GcmKeyLength:
cipher = EVP_aes_128_gcm();
break;
case kAes256GcmKeyLength:
cipher = EVP_aes_256_gcm();
break;
}
const uint8_t* aead_key = aes_gcm_crypter->key;
uint8_t aead_key_rekey[kRekeyAeadKeyLen];
if (is_rekey) {
if (aes_gcm_derive_aead_key(aead_key_rekey, aes_gcm_crypter->key,
aes_gcm_crypter->rekey_data->kdf_counter) !=
GRPC_STATUS_OK) {
aes_gcm_format_errors("Deriving key failed.", error_details);
return GRPC_STATUS_INTERNAL;
}
aead_key = aead_key_rekey;
}
if (!EVP_DecryptInit_ex(aes_gcm_crypter->ctx, cipher, nullptr, aead_key,
nullptr)) {
aes_gcm_format_errors("Setting key failed.", error_details);
return GRPC_STATUS_INTERNAL;
}
if (!EVP_CIPHER_CTX_ctrl(aes_gcm_crypter->ctx, EVP_CTRL_GCM_SET_IVLEN,
static_cast<int>(aes_gcm_crypter->nonce_length),
nullptr)) {
aes_gcm_format_errors("Setting nonce length failed.", error_details);
return GRPC_STATUS_INTERNAL;
}
return GRPC_STATUS_OK;
}
grpc_status_code gsec_aes_gcm_aead_crypter_create(const uint8_t* key,
size_t key_length,
size_t nonce_length,
size_t tag_length, bool rekey,
gsec_aead_crypter** crypter,
char** error_details) {
if (key == nullptr) {
aes_gcm_format_errors("key is nullptr.", error_details);
return GRPC_STATUS_FAILED_PRECONDITION;
}
if (crypter == nullptr) {
aes_gcm_format_errors("crypter is nullptr.", error_details);
return GRPC_STATUS_FAILED_PRECONDITION;
}
*crypter = nullptr;
if ((rekey && key_length != kAes128GcmRekeyKeyLength) ||
(!rekey && key_length != kAes128GcmKeyLength &&
key_length != kAes256GcmKeyLength) ||
(tag_length != kAesGcmTagLength) ||
(nonce_length != kAesGcmNonceLength)) {
aes_gcm_format_errors(
"Invalid key and/or nonce and/or tag length are provided at AEAD "
"crypter instance construction time.",
error_details);
return GRPC_STATUS_FAILED_PRECONDITION;
}
gsec_aes_gcm_aead_crypter* aes_gcm_crypter =
static_cast<gsec_aes_gcm_aead_crypter*>(
gpr_malloc(sizeof(gsec_aes_gcm_aead_crypter)));
aes_gcm_crypter->crypter.vtable = &vtable;
aes_gcm_crypter->nonce_length = nonce_length;
aes_gcm_crypter->tag_length = tag_length;
if (rekey) {
aes_gcm_crypter->key_length = kKdfKeyLen;
aes_gcm_crypter->rekey_data = static_cast<gsec_aes_gcm_aead_rekey_data*>(
gpr_malloc(sizeof(gsec_aes_gcm_aead_rekey_data)));
memcpy(aes_gcm_crypter->rekey_data->nonce_mask, key + kKdfKeyLen,
kAesGcmNonceLength);
// Set kdf_counter to all-zero for initial key derivation.
memset(aes_gcm_crypter->rekey_data->kdf_counter, 0, kKdfCounterLen);
} else {
aes_gcm_crypter->key_length = key_length;
aes_gcm_crypter->rekey_data = nullptr;
}
aes_gcm_crypter->key =
static_cast<uint8_t*>(gpr_malloc(aes_gcm_crypter->key_length));
memcpy(aes_gcm_crypter->key, key, aes_gcm_crypter->key_length);
aes_gcm_crypter->ctx = EVP_CIPHER_CTX_new();
grpc_status_code status =
aes_gcm_new_evp_cipher_ctx(aes_gcm_crypter, error_details);
if (status != GRPC_STATUS_OK) {
gsec_aes_gcm_aead_crypter_destroy(&aes_gcm_crypter->crypter);
gpr_free(aes_gcm_crypter);
return status;
}
*crypter = &aes_gcm_crypter->crypter;
return GRPC_STATUS_OK;
}