blob: 4b226c2992d4827506b2726439d24151475fc76d [file] [log] [blame]
/*
*
* Copyright 2015, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <grpc++/impl/sync.h>
#include <grpc++/impl/thd.h>
#include "src/cpp/server/dynamic_thread_pool.h"
namespace grpc {
DynamicThreadPool::DynamicThread::DynamicThread(DynamicThreadPool* pool)
: pool_(pool),
thd_(new grpc::thread(&DynamicThreadPool::DynamicThread::ThreadFunc,
this)) {}
DynamicThreadPool::DynamicThread::~DynamicThread() {
thd_->join();
thd_.reset();
}
void DynamicThreadPool::DynamicThread::ThreadFunc() {
pool_->ThreadFunc();
// Now that we have killed ourselves, we should reduce the thread count
grpc::unique_lock<grpc::mutex> lock(pool_->mu_);
pool_->nthreads_--;
// Move ourselves to dead list
pool_->dead_threads_.push_back(this);
if ((pool_->shutdown_) && (pool_->nthreads_ == 0)) {
pool_->shutdown_cv_.notify_one();
}
}
void DynamicThreadPool::ThreadFunc() {
for (;;) {
// Wait until work is available or we are shutting down.
grpc::unique_lock<grpc::mutex> lock(mu_);
if (!shutdown_ && callbacks_.empty()) {
// If there are too many threads waiting, then quit this thread
if (threads_waiting_ >= reserve_threads_) {
break;
}
threads_waiting_++;
cv_.wait(lock);
threads_waiting_--;
}
// Drain callbacks before considering shutdown to ensure all work
// gets completed.
if (!callbacks_.empty()) {
auto cb = callbacks_.front();
callbacks_.pop();
lock.unlock();
cb();
} else if (shutdown_) {
break;
}
}
}
DynamicThreadPool::DynamicThreadPool(int reserve_threads)
: shutdown_(false),
reserve_threads_(reserve_threads),
nthreads_(0),
threads_waiting_(0) {
for (int i = 0; i < reserve_threads_; i++) {
grpc::lock_guard<grpc::mutex> lock(mu_);
nthreads_++;
new DynamicThread(this);
}
}
void DynamicThreadPool::ReapThreads(std::list<DynamicThread*>* tlist) {
for (auto t = tlist->begin(); t != tlist->end(); t = tlist->erase(t)) {
delete *t;
}
}
DynamicThreadPool::~DynamicThreadPool() {
grpc::unique_lock<grpc::mutex> lock(mu_);
shutdown_ = true;
cv_.notify_all();
while (nthreads_ != 0) {
shutdown_cv_.wait(lock);
}
ReapThreads(&dead_threads_);
}
void DynamicThreadPool::Add(const std::function<void()>& callback) {
grpc::lock_guard<grpc::mutex> lock(mu_);
// Add works to the callbacks list
callbacks_.push(callback);
// Increase pool size or notify as needed
if (threads_waiting_ == 0) {
// Kick off a new thread
nthreads_++;
new DynamicThread(this);
} else {
cv_.notify_one();
}
// Also use this chance to harvest dead threads
if (!dead_threads_.empty()) {
ReapThreads(&dead_threads_);
}
}
} // namespace grpc