|  | /* trees.c -- output deflated data using Huffman coding | 
|  | * Copyright (C) 1995-2021 Jean-loup Gailly | 
|  | * detect_data_type() function provided freely by Cosmin Truta, 2006 | 
|  | * For conditions of distribution and use, see copyright notice in zlib.h | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *  ALGORITHM | 
|  | * | 
|  | *      The "deflation" process uses several Huffman trees. The more | 
|  | *      common source values are represented by shorter bit sequences. | 
|  | * | 
|  | *      Each code tree is stored in a compressed form which is itself | 
|  | * a Huffman encoding of the lengths of all the code strings (in | 
|  | * ascending order by source values).  The actual code strings are | 
|  | * reconstructed from the lengths in the inflate process, as described | 
|  | * in the deflate specification. | 
|  | * | 
|  | *  REFERENCES | 
|  | * | 
|  | *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". | 
|  | *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc | 
|  | * | 
|  | *      Storer, James A. | 
|  | *          Data Compression:  Methods and Theory, pp. 49-50. | 
|  | *          Computer Science Press, 1988.  ISBN 0-7167-8156-5. | 
|  | * | 
|  | *      Sedgewick, R. | 
|  | *          Algorithms, p290. | 
|  | *          Addison-Wesley, 1983. ISBN 0-201-06672-6. | 
|  | */ | 
|  |  | 
|  | /* @(#) $Id$ */ | 
|  |  | 
|  | /* #define GEN_TREES_H */ | 
|  |  | 
|  | #include "deflate.h" | 
|  |  | 
|  | #ifdef ZLIB_DEBUG | 
|  | #  include <ctype.h> | 
|  | #endif | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Constants | 
|  | */ | 
|  |  | 
|  | #define MAX_BL_BITS 7 | 
|  | /* Bit length codes must not exceed MAX_BL_BITS bits */ | 
|  |  | 
|  | #define END_BLOCK 256 | 
|  | /* end of block literal code */ | 
|  |  | 
|  | #define REP_3_6      16 | 
|  | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ | 
|  |  | 
|  | #define REPZ_3_10    17 | 
|  | /* repeat a zero length 3-10 times  (3 bits of repeat count) */ | 
|  |  | 
|  | #define REPZ_11_138  18 | 
|  | /* repeat a zero length 11-138 times  (7 bits of repeat count) */ | 
|  |  | 
|  | local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ | 
|  | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; | 
|  |  | 
|  | local const int extra_dbits[D_CODES] /* extra bits for each distance code */ | 
|  | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; | 
|  |  | 
|  | local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ | 
|  | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; | 
|  |  | 
|  | local const uch bl_order[BL_CODES] | 
|  | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; | 
|  | /* The lengths of the bit length codes are sent in order of decreasing | 
|  | * probability, to avoid transmitting the lengths for unused bit length codes. | 
|  | */ | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Local data. These are initialized only once. | 
|  | */ | 
|  |  | 
|  | #define DIST_CODE_LEN  512 /* see definition of array dist_code below */ | 
|  |  | 
|  | #if defined(GEN_TREES_H) || !defined(STDC) | 
|  | /* non ANSI compilers may not accept trees.h */ | 
|  |  | 
|  | local ct_data static_ltree[L_CODES+2]; | 
|  | /* The static literal tree. Since the bit lengths are imposed, there is no | 
|  | * need for the L_CODES extra codes used during heap construction. However | 
|  | * The codes 286 and 287 are needed to build a canonical tree (see _tr_init | 
|  | * below). | 
|  | */ | 
|  |  | 
|  | local ct_data static_dtree[D_CODES]; | 
|  | /* The static distance tree. (Actually a trivial tree since all codes use | 
|  | * 5 bits.) | 
|  | */ | 
|  |  | 
|  | uch _dist_code[DIST_CODE_LEN]; | 
|  | /* Distance codes. The first 256 values correspond to the distances | 
|  | * 3 .. 258, the last 256 values correspond to the top 8 bits of | 
|  | * the 15 bit distances. | 
|  | */ | 
|  |  | 
|  | uch _length_code[MAX_MATCH-MIN_MATCH+1]; | 
|  | /* length code for each normalized match length (0 == MIN_MATCH) */ | 
|  |  | 
|  | local int base_length[LENGTH_CODES]; | 
|  | /* First normalized length for each code (0 = MIN_MATCH) */ | 
|  |  | 
|  | local int base_dist[D_CODES]; | 
|  | /* First normalized distance for each code (0 = distance of 1) */ | 
|  |  | 
|  | #else | 
|  | #  include "trees.h" | 
|  | #endif /* GEN_TREES_H */ | 
|  |  | 
|  | struct static_tree_desc_s { | 
|  | const ct_data *static_tree;  /* static tree or NULL */ | 
|  | const intf *extra_bits;      /* extra bits for each code or NULL */ | 
|  | int     extra_base;          /* base index for extra_bits */ | 
|  | int     elems;               /* max number of elements in the tree */ | 
|  | int     max_length;          /* max bit length for the codes */ | 
|  | }; | 
|  |  | 
|  | #ifdef NO_INIT_GLOBAL_POINTERS | 
|  | #  define TCONST | 
|  | #else | 
|  | #  define TCONST const | 
|  | #endif | 
|  |  | 
|  | local TCONST static_tree_desc static_l_desc = | 
|  | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; | 
|  |  | 
|  | local TCONST static_tree_desc static_d_desc = | 
|  | {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS}; | 
|  |  | 
|  | local TCONST static_tree_desc static_bl_desc = | 
|  | {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS}; | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Output a short LSB first on the stream. | 
|  | * IN assertion: there is enough room in pendingBuf. | 
|  | */ | 
|  | #define put_short(s, w) { \ | 
|  | put_byte(s, (uch)((w) & 0xff)); \ | 
|  | put_byte(s, (uch)((ush)(w) >> 8)); \ | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Reverse the first len bits of a code, using straightforward code (a faster | 
|  | * method would use a table) | 
|  | * IN assertion: 1 <= len <= 15 | 
|  | */ | 
|  | local unsigned bi_reverse(unsigned code, int len) { | 
|  | register unsigned res = 0; | 
|  | do { | 
|  | res |= code & 1; | 
|  | code >>= 1, res <<= 1; | 
|  | } while (--len > 0); | 
|  | return res >> 1; | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Flush the bit buffer, keeping at most 7 bits in it. | 
|  | */ | 
|  | local void bi_flush(deflate_state *s) { | 
|  | if (s->bi_valid == 16) { | 
|  | put_short(s, s->bi_buf); | 
|  | s->bi_buf = 0; | 
|  | s->bi_valid = 0; | 
|  | } else if (s->bi_valid >= 8) { | 
|  | put_byte(s, (Byte)s->bi_buf); | 
|  | s->bi_buf >>= 8; | 
|  | s->bi_valid -= 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Flush the bit buffer and align the output on a byte boundary | 
|  | */ | 
|  | local void bi_windup(deflate_state *s) { | 
|  | if (s->bi_valid > 8) { | 
|  | put_short(s, s->bi_buf); | 
|  | } else if (s->bi_valid > 0) { | 
|  | put_byte(s, (Byte)s->bi_buf); | 
|  | } | 
|  | s->bi_buf = 0; | 
|  | s->bi_valid = 0; | 
|  | #ifdef ZLIB_DEBUG | 
|  | s->bits_sent = (s->bits_sent + 7) & ~7; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Generate the codes for a given tree and bit counts (which need not be | 
|  | * optimal). | 
|  | * IN assertion: the array bl_count contains the bit length statistics for | 
|  | * the given tree and the field len is set for all tree elements. | 
|  | * OUT assertion: the field code is set for all tree elements of non | 
|  | *     zero code length. | 
|  | */ | 
|  | local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) { | 
|  | ush next_code[MAX_BITS+1]; /* next code value for each bit length */ | 
|  | unsigned code = 0;         /* running code value */ | 
|  | int bits;                  /* bit index */ | 
|  | int n;                     /* code index */ | 
|  |  | 
|  | /* The distribution counts are first used to generate the code values | 
|  | * without bit reversal. | 
|  | */ | 
|  | for (bits = 1; bits <= MAX_BITS; bits++) { | 
|  | code = (code + bl_count[bits - 1]) << 1; | 
|  | next_code[bits] = (ush)code; | 
|  | } | 
|  | /* Check that the bit counts in bl_count are consistent. The last code | 
|  | * must be all ones. | 
|  | */ | 
|  | Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1, | 
|  | "inconsistent bit counts"); | 
|  | Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); | 
|  |  | 
|  | for (n = 0;  n <= max_code; n++) { | 
|  | int len = tree[n].Len; | 
|  | if (len == 0) continue; | 
|  | /* Now reverse the bits */ | 
|  | tree[n].Code = (ush)bi_reverse(next_code[len]++, len); | 
|  |  | 
|  | Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", | 
|  | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef GEN_TREES_H | 
|  | local void gen_trees_header(void); | 
|  | #endif | 
|  |  | 
|  | #ifndef ZLIB_DEBUG | 
|  | #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) | 
|  | /* Send a code of the given tree. c and tree must not have side effects */ | 
|  |  | 
|  | #else /* !ZLIB_DEBUG */ | 
|  | #  define send_code(s, c, tree) \ | 
|  | { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ | 
|  | send_bits(s, tree[c].Code, tree[c].Len); } | 
|  | #endif | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Send a value on a given number of bits. | 
|  | * IN assertion: length <= 16 and value fits in length bits. | 
|  | */ | 
|  | #ifdef ZLIB_DEBUG | 
|  | local void send_bits(deflate_state *s, int value, int length) { | 
|  | Tracevv((stderr," l %2d v %4x ", length, value)); | 
|  | Assert(length > 0 && length <= 15, "invalid length"); | 
|  | s->bits_sent += (ulg)length; | 
|  |  | 
|  | /* If not enough room in bi_buf, use (valid) bits from bi_buf and | 
|  | * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid)) | 
|  | * unused bits in value. | 
|  | */ | 
|  | if (s->bi_valid > (int)Buf_size - length) { | 
|  | s->bi_buf |= (ush)value << s->bi_valid; | 
|  | put_short(s, s->bi_buf); | 
|  | s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); | 
|  | s->bi_valid += length - Buf_size; | 
|  | } else { | 
|  | s->bi_buf |= (ush)value << s->bi_valid; | 
|  | s->bi_valid += length; | 
|  | } | 
|  | } | 
|  | #else /* !ZLIB_DEBUG */ | 
|  |  | 
|  | #define send_bits(s, value, length) \ | 
|  | { int len = length;\ | 
|  | if (s->bi_valid > (int)Buf_size - len) {\ | 
|  | int val = (int)value;\ | 
|  | s->bi_buf |= (ush)val << s->bi_valid;\ | 
|  | put_short(s, s->bi_buf);\ | 
|  | s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ | 
|  | s->bi_valid += len - Buf_size;\ | 
|  | } else {\ | 
|  | s->bi_buf |= (ush)(value) << s->bi_valid;\ | 
|  | s->bi_valid += len;\ | 
|  | }\ | 
|  | } | 
|  | #endif /* ZLIB_DEBUG */ | 
|  |  | 
|  |  | 
|  | /* the arguments must not have side effects */ | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Initialize the various 'constant' tables. | 
|  | */ | 
|  | local void tr_static_init(void) { | 
|  | #if defined(GEN_TREES_H) || !defined(STDC) | 
|  | static int static_init_done = 0; | 
|  | int n;        /* iterates over tree elements */ | 
|  | int bits;     /* bit counter */ | 
|  | int length;   /* length value */ | 
|  | int code;     /* code value */ | 
|  | int dist;     /* distance index */ | 
|  | ush bl_count[MAX_BITS+1]; | 
|  | /* number of codes at each bit length for an optimal tree */ | 
|  |  | 
|  | if (static_init_done) return; | 
|  |  | 
|  | /* For some embedded targets, global variables are not initialized: */ | 
|  | #ifdef NO_INIT_GLOBAL_POINTERS | 
|  | static_l_desc.static_tree = static_ltree; | 
|  | static_l_desc.extra_bits = extra_lbits; | 
|  | static_d_desc.static_tree = static_dtree; | 
|  | static_d_desc.extra_bits = extra_dbits; | 
|  | static_bl_desc.extra_bits = extra_blbits; | 
|  | #endif | 
|  |  | 
|  | /* Initialize the mapping length (0..255) -> length code (0..28) */ | 
|  | length = 0; | 
|  | for (code = 0; code < LENGTH_CODES-1; code++) { | 
|  | base_length[code] = length; | 
|  | for (n = 0; n < (1 << extra_lbits[code]); n++) { | 
|  | _length_code[length++] = (uch)code; | 
|  | } | 
|  | } | 
|  | Assert (length == 256, "tr_static_init: length != 256"); | 
|  | /* Note that the length 255 (match length 258) can be represented | 
|  | * in two different ways: code 284 + 5 bits or code 285, so we | 
|  | * overwrite length_code[255] to use the best encoding: | 
|  | */ | 
|  | _length_code[length - 1] = (uch)code; | 
|  |  | 
|  | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | 
|  | dist = 0; | 
|  | for (code = 0 ; code < 16; code++) { | 
|  | base_dist[code] = dist; | 
|  | for (n = 0; n < (1 << extra_dbits[code]); n++) { | 
|  | _dist_code[dist++] = (uch)code; | 
|  | } | 
|  | } | 
|  | Assert (dist == 256, "tr_static_init: dist != 256"); | 
|  | dist >>= 7; /* from now on, all distances are divided by 128 */ | 
|  | for ( ; code < D_CODES; code++) { | 
|  | base_dist[code] = dist << 7; | 
|  | for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { | 
|  | _dist_code[256 + dist++] = (uch)code; | 
|  | } | 
|  | } | 
|  | Assert (dist == 256, "tr_static_init: 256 + dist != 512"); | 
|  |  | 
|  | /* Construct the codes of the static literal tree */ | 
|  | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; | 
|  | n = 0; | 
|  | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; | 
|  | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; | 
|  | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; | 
|  | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; | 
|  | /* Codes 286 and 287 do not exist, but we must include them in the | 
|  | * tree construction to get a canonical Huffman tree (longest code | 
|  | * all ones) | 
|  | */ | 
|  | gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); | 
|  |  | 
|  | /* The static distance tree is trivial: */ | 
|  | for (n = 0; n < D_CODES; n++) { | 
|  | static_dtree[n].Len = 5; | 
|  | static_dtree[n].Code = bi_reverse((unsigned)n, 5); | 
|  | } | 
|  | static_init_done = 1; | 
|  |  | 
|  | #  ifdef GEN_TREES_H | 
|  | gen_trees_header(); | 
|  | #  endif | 
|  | #endif /* defined(GEN_TREES_H) || !defined(STDC) */ | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Generate the file trees.h describing the static trees. | 
|  | */ | 
|  | #ifdef GEN_TREES_H | 
|  | #  ifndef ZLIB_DEBUG | 
|  | #    include <stdio.h> | 
|  | #  endif | 
|  |  | 
|  | #  define SEPARATOR(i, last, width) \ | 
|  | ((i) == (last)? "\n};\n\n" :    \ | 
|  | ((i) % (width) == (width) - 1 ? ",\n" : ", ")) | 
|  |  | 
|  | void gen_trees_header(void) { | 
|  | FILE *header = fopen("trees.h", "w"); | 
|  | int i; | 
|  |  | 
|  | Assert (header != NULL, "Can't open trees.h"); | 
|  | fprintf(header, | 
|  | "/* header created automatically with -DGEN_TREES_H */\n\n"); | 
|  |  | 
|  | fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); | 
|  | for (i = 0; i < L_CODES+2; i++) { | 
|  | fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, | 
|  | static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); | 
|  | } | 
|  |  | 
|  | fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); | 
|  | for (i = 0; i < D_CODES; i++) { | 
|  | fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, | 
|  | static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); | 
|  | } | 
|  |  | 
|  | fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); | 
|  | for (i = 0; i < DIST_CODE_LEN; i++) { | 
|  | fprintf(header, "%2u%s", _dist_code[i], | 
|  | SEPARATOR(i, DIST_CODE_LEN-1, 20)); | 
|  | } | 
|  |  | 
|  | fprintf(header, | 
|  | "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); | 
|  | for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { | 
|  | fprintf(header, "%2u%s", _length_code[i], | 
|  | SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); | 
|  | } | 
|  |  | 
|  | fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); | 
|  | for (i = 0; i < LENGTH_CODES; i++) { | 
|  | fprintf(header, "%1u%s", base_length[i], | 
|  | SEPARATOR(i, LENGTH_CODES-1, 20)); | 
|  | } | 
|  |  | 
|  | fprintf(header, "local const int base_dist[D_CODES] = {\n"); | 
|  | for (i = 0; i < D_CODES; i++) { | 
|  | fprintf(header, "%5u%s", base_dist[i], | 
|  | SEPARATOR(i, D_CODES-1, 10)); | 
|  | } | 
|  |  | 
|  | fclose(header); | 
|  | } | 
|  | #endif /* GEN_TREES_H */ | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Initialize a new block. | 
|  | */ | 
|  | local void init_block(deflate_state *s) { | 
|  | int n; /* iterates over tree elements */ | 
|  |  | 
|  | /* Initialize the trees. */ | 
|  | for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0; | 
|  | for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0; | 
|  | for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; | 
|  |  | 
|  | s->dyn_ltree[END_BLOCK].Freq = 1; | 
|  | s->opt_len = s->static_len = 0L; | 
|  | s->sym_next = s->matches = 0; | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Initialize the tree data structures for a new zlib stream. | 
|  | */ | 
|  | void ZLIB_INTERNAL _tr_init(deflate_state *s) { | 
|  | tr_static_init(); | 
|  |  | 
|  | s->l_desc.dyn_tree = s->dyn_ltree; | 
|  | s->l_desc.stat_desc = &static_l_desc; | 
|  |  | 
|  | s->d_desc.dyn_tree = s->dyn_dtree; | 
|  | s->d_desc.stat_desc = &static_d_desc; | 
|  |  | 
|  | s->bl_desc.dyn_tree = s->bl_tree; | 
|  | s->bl_desc.stat_desc = &static_bl_desc; | 
|  |  | 
|  | s->bi_buf = 0; | 
|  | s->bi_valid = 0; | 
|  | #ifdef ZLIB_DEBUG | 
|  | s->compressed_len = 0L; | 
|  | s->bits_sent = 0L; | 
|  | #endif | 
|  |  | 
|  | /* Initialize the first block of the first file: */ | 
|  | init_block(s); | 
|  | } | 
|  |  | 
|  | #define SMALLEST 1 | 
|  | /* Index within the heap array of least frequent node in the Huffman tree */ | 
|  |  | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Remove the smallest element from the heap and recreate the heap with | 
|  | * one less element. Updates heap and heap_len. | 
|  | */ | 
|  | #define pqremove(s, tree, top) \ | 
|  | {\ | 
|  | top = s->heap[SMALLEST]; \ | 
|  | s->heap[SMALLEST] = s->heap[s->heap_len--]; \ | 
|  | pqdownheap(s, tree, SMALLEST); \ | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Compares to subtrees, using the tree depth as tie breaker when | 
|  | * the subtrees have equal frequency. This minimizes the worst case length. | 
|  | */ | 
|  | #define smaller(tree, n, m, depth) \ | 
|  | (tree[n].Freq < tree[m].Freq || \ | 
|  | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Restore the heap property by moving down the tree starting at node k, | 
|  | * exchanging a node with the smallest of its two sons if necessary, stopping | 
|  | * when the heap property is re-established (each father smaller than its | 
|  | * two sons). | 
|  | */ | 
|  | local void pqdownheap(deflate_state *s, ct_data *tree, int k) { | 
|  | int v = s->heap[k]; | 
|  | int j = k << 1;  /* left son of k */ | 
|  | while (j <= s->heap_len) { | 
|  | /* Set j to the smallest of the two sons: */ | 
|  | if (j < s->heap_len && | 
|  | smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) { | 
|  | j++; | 
|  | } | 
|  | /* Exit if v is smaller than both sons */ | 
|  | if (smaller(tree, v, s->heap[j], s->depth)) break; | 
|  |  | 
|  | /* Exchange v with the smallest son */ | 
|  | s->heap[k] = s->heap[j];  k = j; | 
|  |  | 
|  | /* And continue down the tree, setting j to the left son of k */ | 
|  | j <<= 1; | 
|  | } | 
|  | s->heap[k] = v; | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Compute the optimal bit lengths for a tree and update the total bit length | 
|  | * for the current block. | 
|  | * IN assertion: the fields freq and dad are set, heap[heap_max] and | 
|  | *    above are the tree nodes sorted by increasing frequency. | 
|  | * OUT assertions: the field len is set to the optimal bit length, the | 
|  | *     array bl_count contains the frequencies for each bit length. | 
|  | *     The length opt_len is updated; static_len is also updated if stree is | 
|  | *     not null. | 
|  | */ | 
|  | local void gen_bitlen(deflate_state *s, tree_desc *desc) { | 
|  | ct_data *tree        = desc->dyn_tree; | 
|  | int max_code         = desc->max_code; | 
|  | const ct_data *stree = desc->stat_desc->static_tree; | 
|  | const intf *extra    = desc->stat_desc->extra_bits; | 
|  | int base             = desc->stat_desc->extra_base; | 
|  | int max_length       = desc->stat_desc->max_length; | 
|  | int h;              /* heap index */ | 
|  | int n, m;           /* iterate over the tree elements */ | 
|  | int bits;           /* bit length */ | 
|  | int xbits;          /* extra bits */ | 
|  | ush f;              /* frequency */ | 
|  | int overflow = 0;   /* number of elements with bit length too large */ | 
|  |  | 
|  | for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; | 
|  |  | 
|  | /* In a first pass, compute the optimal bit lengths (which may | 
|  | * overflow in the case of the bit length tree). | 
|  | */ | 
|  | tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ | 
|  |  | 
|  | for (h = s->heap_max + 1; h < HEAP_SIZE; h++) { | 
|  | n = s->heap[h]; | 
|  | bits = tree[tree[n].Dad].Len + 1; | 
|  | if (bits > max_length) bits = max_length, overflow++; | 
|  | tree[n].Len = (ush)bits; | 
|  | /* We overwrite tree[n].Dad which is no longer needed */ | 
|  |  | 
|  | if (n > max_code) continue; /* not a leaf node */ | 
|  |  | 
|  | s->bl_count[bits]++; | 
|  | xbits = 0; | 
|  | if (n >= base) xbits = extra[n - base]; | 
|  | f = tree[n].Freq; | 
|  | s->opt_len += (ulg)f * (unsigned)(bits + xbits); | 
|  | if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits); | 
|  | } | 
|  | if (overflow == 0) return; | 
|  |  | 
|  | Tracev((stderr,"\nbit length overflow\n")); | 
|  | /* This happens for example on obj2 and pic of the Calgary corpus */ | 
|  |  | 
|  | /* Find the first bit length which could increase: */ | 
|  | do { | 
|  | bits = max_length - 1; | 
|  | while (s->bl_count[bits] == 0) bits--; | 
|  | s->bl_count[bits]--;        /* move one leaf down the tree */ | 
|  | s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */ | 
|  | s->bl_count[max_length]--; | 
|  | /* The brother of the overflow item also moves one step up, | 
|  | * but this does not affect bl_count[max_length] | 
|  | */ | 
|  | overflow -= 2; | 
|  | } while (overflow > 0); | 
|  |  | 
|  | /* Now recompute all bit lengths, scanning in increasing frequency. | 
|  | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | 
|  | * lengths instead of fixing only the wrong ones. This idea is taken | 
|  | * from 'ar' written by Haruhiko Okumura.) | 
|  | */ | 
|  | for (bits = max_length; bits != 0; bits--) { | 
|  | n = s->bl_count[bits]; | 
|  | while (n != 0) { | 
|  | m = s->heap[--h]; | 
|  | if (m > max_code) continue; | 
|  | if ((unsigned) tree[m].Len != (unsigned) bits) { | 
|  | Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); | 
|  | s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq; | 
|  | tree[m].Len = (ush)bits; | 
|  | } | 
|  | n--; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef DUMP_BL_TREE | 
|  | #  include <stdio.h> | 
|  | #endif | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Construct one Huffman tree and assigns the code bit strings and lengths. | 
|  | * Update the total bit length for the current block. | 
|  | * IN assertion: the field freq is set for all tree elements. | 
|  | * OUT assertions: the fields len and code are set to the optimal bit length | 
|  | *     and corresponding code. The length opt_len is updated; static_len is | 
|  | *     also updated if stree is not null. The field max_code is set. | 
|  | */ | 
|  | local void build_tree(deflate_state *s, tree_desc *desc) { | 
|  | ct_data *tree         = desc->dyn_tree; | 
|  | const ct_data *stree  = desc->stat_desc->static_tree; | 
|  | int elems             = desc->stat_desc->elems; | 
|  | int n, m;          /* iterate over heap elements */ | 
|  | int max_code = -1; /* largest code with non zero frequency */ | 
|  | int node;          /* new node being created */ | 
|  |  | 
|  | /* Construct the initial heap, with least frequent element in | 
|  | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1]. | 
|  | * heap[0] is not used. | 
|  | */ | 
|  | s->heap_len = 0, s->heap_max = HEAP_SIZE; | 
|  |  | 
|  | for (n = 0; n < elems; n++) { | 
|  | if (tree[n].Freq != 0) { | 
|  | s->heap[++(s->heap_len)] = max_code = n; | 
|  | s->depth[n] = 0; | 
|  | } else { | 
|  | tree[n].Len = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The pkzip format requires that at least one distance code exists, | 
|  | * and that at least one bit should be sent even if there is only one | 
|  | * possible code. So to avoid special checks later on we force at least | 
|  | * two codes of non zero frequency. | 
|  | */ | 
|  | while (s->heap_len < 2) { | 
|  | node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); | 
|  | tree[node].Freq = 1; | 
|  | s->depth[node] = 0; | 
|  | s->opt_len--; if (stree) s->static_len -= stree[node].Len; | 
|  | /* node is 0 or 1 so it does not have extra bits */ | 
|  | } | 
|  | desc->max_code = max_code; | 
|  |  | 
|  | /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree, | 
|  | * establish sub-heaps of increasing lengths: | 
|  | */ | 
|  | for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); | 
|  |  | 
|  | /* Construct the Huffman tree by repeatedly combining the least two | 
|  | * frequent nodes. | 
|  | */ | 
|  | node = elems;              /* next internal node of the tree */ | 
|  | do { | 
|  | pqremove(s, tree, n);  /* n = node of least frequency */ | 
|  | m = s->heap[SMALLEST]; /* m = node of next least frequency */ | 
|  |  | 
|  | s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ | 
|  | s->heap[--(s->heap_max)] = m; | 
|  |  | 
|  | /* Create a new node father of n and m */ | 
|  | tree[node].Freq = tree[n].Freq + tree[m].Freq; | 
|  | s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? | 
|  | s->depth[n] : s->depth[m]) + 1); | 
|  | tree[n].Dad = tree[m].Dad = (ush)node; | 
|  | #ifdef DUMP_BL_TREE | 
|  | if (tree == s->bl_tree) { | 
|  | fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", | 
|  | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); | 
|  | } | 
|  | #endif | 
|  | /* and insert the new node in the heap */ | 
|  | s->heap[SMALLEST] = node++; | 
|  | pqdownheap(s, tree, SMALLEST); | 
|  |  | 
|  | } while (s->heap_len >= 2); | 
|  |  | 
|  | s->heap[--(s->heap_max)] = s->heap[SMALLEST]; | 
|  |  | 
|  | /* At this point, the fields freq and dad are set. We can now | 
|  | * generate the bit lengths. | 
|  | */ | 
|  | gen_bitlen(s, (tree_desc *)desc); | 
|  |  | 
|  | /* The field len is now set, we can generate the bit codes */ | 
|  | gen_codes ((ct_data *)tree, max_code, s->bl_count); | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Scan a literal or distance tree to determine the frequencies of the codes | 
|  | * in the bit length tree. | 
|  | */ | 
|  | local void scan_tree(deflate_state *s, ct_data *tree, int max_code) { | 
|  | int n;                     /* iterates over all tree elements */ | 
|  | int prevlen = -1;          /* last emitted length */ | 
|  | int curlen;                /* length of current code */ | 
|  | int nextlen = tree[0].Len; /* length of next code */ | 
|  | int count = 0;             /* repeat count of the current code */ | 
|  | int max_count = 7;         /* max repeat count */ | 
|  | int min_count = 4;         /* min repeat count */ | 
|  |  | 
|  | if (nextlen == 0) max_count = 138, min_count = 3; | 
|  | tree[max_code + 1].Len = (ush)0xffff; /* guard */ | 
|  |  | 
|  | for (n = 0; n <= max_code; n++) { | 
|  | curlen = nextlen; nextlen = tree[n + 1].Len; | 
|  | if (++count < max_count && curlen == nextlen) { | 
|  | continue; | 
|  | } else if (count < min_count) { | 
|  | s->bl_tree[curlen].Freq += count; | 
|  | } else if (curlen != 0) { | 
|  | if (curlen != prevlen) s->bl_tree[curlen].Freq++; | 
|  | s->bl_tree[REP_3_6].Freq++; | 
|  | } else if (count <= 10) { | 
|  | s->bl_tree[REPZ_3_10].Freq++; | 
|  | } else { | 
|  | s->bl_tree[REPZ_11_138].Freq++; | 
|  | } | 
|  | count = 0; prevlen = curlen; | 
|  | if (nextlen == 0) { | 
|  | max_count = 138, min_count = 3; | 
|  | } else if (curlen == nextlen) { | 
|  | max_count = 6, min_count = 3; | 
|  | } else { | 
|  | max_count = 7, min_count = 4; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Send a literal or distance tree in compressed form, using the codes in | 
|  | * bl_tree. | 
|  | */ | 
|  | local void send_tree(deflate_state *s, ct_data *tree, int max_code) { | 
|  | int n;                     /* iterates over all tree elements */ | 
|  | int prevlen = -1;          /* last emitted length */ | 
|  | int curlen;                /* length of current code */ | 
|  | int nextlen = tree[0].Len; /* length of next code */ | 
|  | int count = 0;             /* repeat count of the current code */ | 
|  | int max_count = 7;         /* max repeat count */ | 
|  | int min_count = 4;         /* min repeat count */ | 
|  |  | 
|  | /* tree[max_code + 1].Len = -1; */  /* guard already set */ | 
|  | if (nextlen == 0) max_count = 138, min_count = 3; | 
|  |  | 
|  | for (n = 0; n <= max_code; n++) { | 
|  | curlen = nextlen; nextlen = tree[n + 1].Len; | 
|  | if (++count < max_count && curlen == nextlen) { | 
|  | continue; | 
|  | } else if (count < min_count) { | 
|  | do { send_code(s, curlen, s->bl_tree); } while (--count != 0); | 
|  |  | 
|  | } else if (curlen != 0) { | 
|  | if (curlen != prevlen) { | 
|  | send_code(s, curlen, s->bl_tree); count--; | 
|  | } | 
|  | Assert(count >= 3 && count <= 6, " 3_6?"); | 
|  | send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2); | 
|  |  | 
|  | } else if (count <= 10) { | 
|  | send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3); | 
|  |  | 
|  | } else { | 
|  | send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7); | 
|  | } | 
|  | count = 0; prevlen = curlen; | 
|  | if (nextlen == 0) { | 
|  | max_count = 138, min_count = 3; | 
|  | } else if (curlen == nextlen) { | 
|  | max_count = 6, min_count = 3; | 
|  | } else { | 
|  | max_count = 7, min_count = 4; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Construct the Huffman tree for the bit lengths and return the index in | 
|  | * bl_order of the last bit length code to send. | 
|  | */ | 
|  | local int build_bl_tree(deflate_state *s) { | 
|  | int max_blindex;  /* index of last bit length code of non zero freq */ | 
|  |  | 
|  | /* Determine the bit length frequencies for literal and distance trees */ | 
|  | scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); | 
|  | scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); | 
|  |  | 
|  | /* Build the bit length tree: */ | 
|  | build_tree(s, (tree_desc *)(&(s->bl_desc))); | 
|  | /* opt_len now includes the length of the tree representations, except the | 
|  | * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts. | 
|  | */ | 
|  |  | 
|  | /* Determine the number of bit length codes to send. The pkzip format | 
|  | * requires that at least 4 bit length codes be sent. (appnote.txt says | 
|  | * 3 but the actual value used is 4.) | 
|  | */ | 
|  | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { | 
|  | if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; | 
|  | } | 
|  | /* Update opt_len to include the bit length tree and counts */ | 
|  | s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4; | 
|  | Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | 
|  | s->opt_len, s->static_len)); | 
|  |  | 
|  | return max_blindex; | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Send the header for a block using dynamic Huffman trees: the counts, the | 
|  | * lengths of the bit length codes, the literal tree and the distance tree. | 
|  | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | 
|  | */ | 
|  | local void send_all_trees(deflate_state *s, int lcodes, int dcodes, | 
|  | int blcodes) { | 
|  | int rank;                    /* index in bl_order */ | 
|  |  | 
|  | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | 
|  | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | 
|  | "too many codes"); | 
|  | Tracev((stderr, "\nbl counts: ")); | 
|  | send_bits(s, lcodes - 257, 5);  /* not +255 as stated in appnote.txt */ | 
|  | send_bits(s, dcodes - 1,   5); | 
|  | send_bits(s, blcodes - 4,  4);  /* not -3 as stated in appnote.txt */ | 
|  | for (rank = 0; rank < blcodes; rank++) { | 
|  | Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | 
|  | send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); | 
|  | } | 
|  | Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | 
|  |  | 
|  | send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1);  /* literal tree */ | 
|  | Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | 
|  |  | 
|  | send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1);  /* distance tree */ | 
|  | Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Send a stored block | 
|  | */ | 
|  | void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf, | 
|  | ulg stored_len, int last) { | 
|  | send_bits(s, (STORED_BLOCK<<1) + last, 3);  /* send block type */ | 
|  | bi_windup(s);        /* align on byte boundary */ | 
|  | put_short(s, (ush)stored_len); | 
|  | put_short(s, (ush)~stored_len); | 
|  | if (stored_len) | 
|  | zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len); | 
|  | s->pending += stored_len; | 
|  | #ifdef ZLIB_DEBUG | 
|  | s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; | 
|  | s->compressed_len += (stored_len + 4) << 3; | 
|  | s->bits_sent += 2*16; | 
|  | s->bits_sent += stored_len << 3; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) | 
|  | */ | 
|  | void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) { | 
|  | bi_flush(s); | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Send one empty static block to give enough lookahead for inflate. | 
|  | * This takes 10 bits, of which 7 may remain in the bit buffer. | 
|  | */ | 
|  | void ZLIB_INTERNAL _tr_align(deflate_state *s) { | 
|  | send_bits(s, STATIC_TREES<<1, 3); | 
|  | send_code(s, END_BLOCK, static_ltree); | 
|  | #ifdef ZLIB_DEBUG | 
|  | s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ | 
|  | #endif | 
|  | bi_flush(s); | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Send the block data compressed using the given Huffman trees | 
|  | */ | 
|  | local void compress_block(deflate_state *s, const ct_data *ltree, | 
|  | const ct_data *dtree) { | 
|  | unsigned dist;      /* distance of matched string */ | 
|  | int lc;             /* match length or unmatched char (if dist == 0) */ | 
|  | unsigned sx = 0;    /* running index in sym_buf */ | 
|  | unsigned code;      /* the code to send */ | 
|  | int extra;          /* number of extra bits to send */ | 
|  |  | 
|  | if (s->sym_next != 0) do { | 
|  | dist = s->sym_buf[sx++] & 0xff; | 
|  | dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8; | 
|  | lc = s->sym_buf[sx++]; | 
|  | if (dist == 0) { | 
|  | send_code(s, lc, ltree); /* send a literal byte */ | 
|  | Tracecv(isgraph(lc), (stderr," '%c' ", lc)); | 
|  | } else { | 
|  | /* Here, lc is the match length - MIN_MATCH */ | 
|  | code = _length_code[lc]; | 
|  | send_code(s, code + LITERALS + 1, ltree);   /* send length code */ | 
|  | extra = extra_lbits[code]; | 
|  | if (extra != 0) { | 
|  | lc -= base_length[code]; | 
|  | send_bits(s, lc, extra);       /* send the extra length bits */ | 
|  | } | 
|  | dist--; /* dist is now the match distance - 1 */ | 
|  | code = d_code(dist); | 
|  | Assert (code < D_CODES, "bad d_code"); | 
|  |  | 
|  | send_code(s, code, dtree);       /* send the distance code */ | 
|  | extra = extra_dbits[code]; | 
|  | if (extra != 0) { | 
|  | dist -= (unsigned)base_dist[code]; | 
|  | send_bits(s, dist, extra);   /* send the extra distance bits */ | 
|  | } | 
|  | } /* literal or match pair ? */ | 
|  |  | 
|  | /* Check that the overlay between pending_buf and sym_buf is ok: */ | 
|  | Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow"); | 
|  |  | 
|  | } while (sx < s->sym_next); | 
|  |  | 
|  | send_code(s, END_BLOCK, ltree); | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Check if the data type is TEXT or BINARY, using the following algorithm: | 
|  | * - TEXT if the two conditions below are satisfied: | 
|  | *    a) There are no non-portable control characters belonging to the | 
|  | *       "block list" (0..6, 14..25, 28..31). | 
|  | *    b) There is at least one printable character belonging to the | 
|  | *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). | 
|  | * - BINARY otherwise. | 
|  | * - The following partially-portable control characters form a | 
|  | *   "gray list" that is ignored in this detection algorithm: | 
|  | *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). | 
|  | * IN assertion: the fields Freq of dyn_ltree are set. | 
|  | */ | 
|  | local int detect_data_type(deflate_state *s) { | 
|  | /* block_mask is the bit mask of block-listed bytes | 
|  | * set bits 0..6, 14..25, and 28..31 | 
|  | * 0xf3ffc07f = binary 11110011111111111100000001111111 | 
|  | */ | 
|  | unsigned long block_mask = 0xf3ffc07fUL; | 
|  | int n; | 
|  |  | 
|  | /* Check for non-textual ("block-listed") bytes. */ | 
|  | for (n = 0; n <= 31; n++, block_mask >>= 1) | 
|  | if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0)) | 
|  | return Z_BINARY; | 
|  |  | 
|  | /* Check for textual ("allow-listed") bytes. */ | 
|  | if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 | 
|  | || s->dyn_ltree[13].Freq != 0) | 
|  | return Z_TEXT; | 
|  | for (n = 32; n < LITERALS; n++) | 
|  | if (s->dyn_ltree[n].Freq != 0) | 
|  | return Z_TEXT; | 
|  |  | 
|  | /* There are no "block-listed" or "allow-listed" bytes: | 
|  | * this stream either is empty or has tolerated ("gray-listed") bytes only. | 
|  | */ | 
|  | return Z_BINARY; | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Determine the best encoding for the current block: dynamic trees, static | 
|  | * trees or store, and write out the encoded block. | 
|  | */ | 
|  | void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf, | 
|  | ulg stored_len, int last) { | 
|  | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ | 
|  | int max_blindex = 0;  /* index of last bit length code of non zero freq */ | 
|  |  | 
|  | /* Build the Huffman trees unless a stored block is forced */ | 
|  | if (s->level > 0) { | 
|  |  | 
|  | /* Check if the file is binary or text */ | 
|  | if (s->strm->data_type == Z_UNKNOWN) | 
|  | s->strm->data_type = detect_data_type(s); | 
|  |  | 
|  | /* Construct the literal and distance trees */ | 
|  | build_tree(s, (tree_desc *)(&(s->l_desc))); | 
|  | Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | 
|  | s->static_len)); | 
|  |  | 
|  | build_tree(s, (tree_desc *)(&(s->d_desc))); | 
|  | Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | 
|  | s->static_len)); | 
|  | /* At this point, opt_len and static_len are the total bit lengths of | 
|  | * the compressed block data, excluding the tree representations. | 
|  | */ | 
|  |  | 
|  | /* Build the bit length tree for the above two trees, and get the index | 
|  | * in bl_order of the last bit length code to send. | 
|  | */ | 
|  | max_blindex = build_bl_tree(s); | 
|  |  | 
|  | /* Determine the best encoding. Compute the block lengths in bytes. */ | 
|  | opt_lenb = (s->opt_len + 3 + 7) >> 3; | 
|  | static_lenb = (s->static_len + 3 + 7) >> 3; | 
|  |  | 
|  | Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | 
|  | opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | 
|  | s->sym_next / 3)); | 
|  |  | 
|  | #ifndef FORCE_STATIC | 
|  | if (static_lenb <= opt_lenb || s->strategy == Z_FIXED) | 
|  | #endif | 
|  | opt_lenb = static_lenb; | 
|  |  | 
|  | } else { | 
|  | Assert(buf != (char*)0, "lost buf"); | 
|  | opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ | 
|  | } | 
|  |  | 
|  | #ifdef FORCE_STORED | 
|  | if (buf != (char*)0) { /* force stored block */ | 
|  | #else | 
|  | if (stored_len + 4 <= opt_lenb && buf != (char*)0) { | 
|  | /* 4: two words for the lengths */ | 
|  | #endif | 
|  | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | 
|  | * Otherwise we can't have processed more than WSIZE input bytes since | 
|  | * the last block flush, because compression would have been | 
|  | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | 
|  | * transform a block into a stored block. | 
|  | */ | 
|  | _tr_stored_block(s, buf, stored_len, last); | 
|  |  | 
|  | } else if (static_lenb == opt_lenb) { | 
|  | send_bits(s, (STATIC_TREES<<1) + last, 3); | 
|  | compress_block(s, (const ct_data *)static_ltree, | 
|  | (const ct_data *)static_dtree); | 
|  | #ifdef ZLIB_DEBUG | 
|  | s->compressed_len += 3 + s->static_len; | 
|  | #endif | 
|  | } else { | 
|  | send_bits(s, (DYN_TREES<<1) + last, 3); | 
|  | send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1, | 
|  | max_blindex + 1); | 
|  | compress_block(s, (const ct_data *)s->dyn_ltree, | 
|  | (const ct_data *)s->dyn_dtree); | 
|  | #ifdef ZLIB_DEBUG | 
|  | s->compressed_len += 3 + s->opt_len; | 
|  | #endif | 
|  | } | 
|  | Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | 
|  | /* The above check is made mod 2^32, for files larger than 512 MB | 
|  | * and uLong implemented on 32 bits. | 
|  | */ | 
|  | init_block(s); | 
|  |  | 
|  | if (last) { | 
|  | bi_windup(s); | 
|  | #ifdef ZLIB_DEBUG | 
|  | s->compressed_len += 7;  /* align on byte boundary */ | 
|  | #endif | 
|  | } | 
|  | Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3, | 
|  | s->compressed_len - 7*last)); | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Save the match info and tally the frequency counts. Return true if | 
|  | * the current block must be flushed. | 
|  | */ | 
|  | int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) { | 
|  | s->sym_buf[s->sym_next++] = (uch)dist; | 
|  | s->sym_buf[s->sym_next++] = (uch)(dist >> 8); | 
|  | s->sym_buf[s->sym_next++] = (uch)lc; | 
|  | if (dist == 0) { | 
|  | /* lc is the unmatched char */ | 
|  | s->dyn_ltree[lc].Freq++; | 
|  | } else { | 
|  | s->matches++; | 
|  | /* Here, lc is the match length - MIN_MATCH */ | 
|  | dist--;             /* dist = match distance - 1 */ | 
|  | Assert((ush)dist < (ush)MAX_DIST(s) && | 
|  | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | 
|  | (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match"); | 
|  |  | 
|  | s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++; | 
|  | s->dyn_dtree[d_code(dist)].Freq++; | 
|  | } | 
|  | return (s->sym_next == s->sym_end); | 
|  | } |