|  | /* crc32.c -- compute the CRC-32 of a data stream | 
|  | * Copyright (C) 1995-2022 Mark Adler | 
|  | * For conditions of distribution and use, see copyright notice in zlib.h | 
|  | * | 
|  | * This interleaved implementation of a CRC makes use of pipelined multiple | 
|  | * arithmetic-logic units, commonly found in modern CPU cores. It is due to | 
|  | * Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution. | 
|  | */ | 
|  |  | 
|  | /* @(#) $Id$ */ | 
|  |  | 
|  | /* | 
|  | Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore | 
|  | protection on the static variables used to control the first-use generation | 
|  | of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should | 
|  | first call get_crc_table() to initialize the tables before allowing more than | 
|  | one thread to use crc32(). | 
|  |  | 
|  | MAKECRCH can be #defined to write out crc32.h. A main() routine is also | 
|  | produced, so that this one source file can be compiled to an executable. | 
|  | */ | 
|  |  | 
|  | #ifdef MAKECRCH | 
|  | #  include <stdio.h> | 
|  | #  ifndef DYNAMIC_CRC_TABLE | 
|  | #    define DYNAMIC_CRC_TABLE | 
|  | #  endif /* !DYNAMIC_CRC_TABLE */ | 
|  | #endif /* MAKECRCH */ | 
|  |  | 
|  | #include "zutil.h"      /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */ | 
|  |  | 
|  | /* | 
|  | A CRC of a message is computed on N braids of words in the message, where | 
|  | each word consists of W bytes (4 or 8). If N is 3, for example, then three | 
|  | running sparse CRCs are calculated respectively on each braid, at these | 
|  | indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ... | 
|  | This is done starting at a word boundary, and continues until as many blocks | 
|  | of N * W bytes as are available have been processed. The results are combined | 
|  | into a single CRC at the end. For this code, N must be in the range 1..6 and | 
|  | W must be 4 or 8. The upper limit on N can be increased if desired by adding | 
|  | more #if blocks, extending the patterns apparent in the code. In addition, | 
|  | crc32.h would need to be regenerated, if the maximum N value is increased. | 
|  |  | 
|  | N and W are chosen empirically by benchmarking the execution time on a given | 
|  | processor. The choices for N and W below were based on testing on Intel Kaby | 
|  | Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64 | 
|  | Octeon II processors. The Intel, AMD, and ARM processors were all fastest | 
|  | with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4. | 
|  | They were all tested with either gcc or clang, all using the -O3 optimization | 
|  | level. Your mileage may vary. | 
|  | */ | 
|  |  | 
|  | /* Define N */ | 
|  | #ifdef Z_TESTN | 
|  | #  define N Z_TESTN | 
|  | #else | 
|  | #  define N 5 | 
|  | #endif | 
|  | #if N < 1 || N > 6 | 
|  | #  error N must be in 1..6 | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | z_crc_t must be at least 32 bits. z_word_t must be at least as long as | 
|  | z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and | 
|  | that bytes are eight bits. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | Define W and the associated z_word_t type. If W is not defined, then a | 
|  | braided calculation is not used, and the associated tables and code are not | 
|  | compiled. | 
|  | */ | 
|  | #ifdef Z_TESTW | 
|  | #  if Z_TESTW-1 != -1 | 
|  | #    define W Z_TESTW | 
|  | #  endif | 
|  | #else | 
|  | #  ifdef MAKECRCH | 
|  | #    define W 8         /* required for MAKECRCH */ | 
|  | #  else | 
|  | #    if defined(__x86_64__) || defined(__aarch64__) | 
|  | #      define W 8 | 
|  | #    else | 
|  | #      define W 4 | 
|  | #    endif | 
|  | #  endif | 
|  | #endif | 
|  | #ifdef W | 
|  | #  if W == 8 && defined(Z_U8) | 
|  | typedef Z_U8 z_word_t; | 
|  | #  elif defined(Z_U4) | 
|  | #    undef W | 
|  | #    define W 4 | 
|  | typedef Z_U4 z_word_t; | 
|  | #  else | 
|  | #    undef W | 
|  | #  endif | 
|  | #endif | 
|  |  | 
|  | /* If available, use the ARM processor CRC32 instruction. */ | 
|  | #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8 | 
|  | #  define ARMCRC32 | 
|  | #endif | 
|  |  | 
|  | #if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE)) | 
|  | /* | 
|  | Swap the bytes in a z_word_t to convert between little and big endian. Any | 
|  | self-respecting compiler will optimize this to a single machine byte-swap | 
|  | instruction, if one is available. This assumes that word_t is either 32 bits | 
|  | or 64 bits. | 
|  | */ | 
|  | local z_word_t byte_swap(z_word_t word) { | 
|  | #  if W == 8 | 
|  | return | 
|  | (word & 0xff00000000000000) >> 56 | | 
|  | (word & 0xff000000000000) >> 40 | | 
|  | (word & 0xff0000000000) >> 24 | | 
|  | (word & 0xff00000000) >> 8 | | 
|  | (word & 0xff000000) << 8 | | 
|  | (word & 0xff0000) << 24 | | 
|  | (word & 0xff00) << 40 | | 
|  | (word & 0xff) << 56; | 
|  | #  else   /* W == 4 */ | 
|  | return | 
|  | (word & 0xff000000) >> 24 | | 
|  | (word & 0xff0000) >> 8 | | 
|  | (word & 0xff00) << 8 | | 
|  | (word & 0xff) << 24; | 
|  | #  endif | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef DYNAMIC_CRC_TABLE | 
|  | /* ========================================================================= | 
|  | * Table of powers of x for combining CRC-32s, filled in by make_crc_table() | 
|  | * below. | 
|  | */ | 
|  | local z_crc_t FAR x2n_table[32]; | 
|  | #else | 
|  | /* ========================================================================= | 
|  | * Tables for byte-wise and braided CRC-32 calculations, and a table of powers | 
|  | * of x for combining CRC-32s, all made by make_crc_table(). | 
|  | */ | 
|  | #  include "crc32.h" | 
|  | #endif | 
|  |  | 
|  | /* CRC polynomial. */ | 
|  | #define POLY 0xedb88320         /* p(x) reflected, with x^32 implied */ | 
|  |  | 
|  | /* | 
|  | Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial, | 
|  | reflected. For speed, this requires that a not be zero. | 
|  | */ | 
|  | local z_crc_t multmodp(z_crc_t a, z_crc_t b) { | 
|  | z_crc_t m, p; | 
|  |  | 
|  | m = (z_crc_t)1 << 31; | 
|  | p = 0; | 
|  | for (;;) { | 
|  | if (a & m) { | 
|  | p ^= b; | 
|  | if ((a & (m - 1)) == 0) | 
|  | break; | 
|  | } | 
|  | m >>= 1; | 
|  | b = b & 1 ? (b >> 1) ^ POLY : b >> 1; | 
|  | } | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been | 
|  | initialized. | 
|  | */ | 
|  | local z_crc_t x2nmodp(z_off64_t n, unsigned k) { | 
|  | z_crc_t p; | 
|  |  | 
|  | p = (z_crc_t)1 << 31;           /* x^0 == 1 */ | 
|  | while (n) { | 
|  | if (n & 1) | 
|  | p = multmodp(x2n_table[k & 31], p); | 
|  | n >>= 1; | 
|  | k++; | 
|  | } | 
|  | return p; | 
|  | } | 
|  |  | 
|  | #ifdef DYNAMIC_CRC_TABLE | 
|  | /* ========================================================================= | 
|  | * Build the tables for byte-wise and braided CRC-32 calculations, and a table | 
|  | * of powers of x for combining CRC-32s. | 
|  | */ | 
|  | local z_crc_t FAR crc_table[256]; | 
|  | #ifdef W | 
|  | local z_word_t FAR crc_big_table[256]; | 
|  | local z_crc_t FAR crc_braid_table[W][256]; | 
|  | local z_word_t FAR crc_braid_big_table[W][256]; | 
|  | local void braid(z_crc_t [][256], z_word_t [][256], int, int); | 
|  | #endif | 
|  | #ifdef MAKECRCH | 
|  | local void write_table(FILE *, const z_crc_t FAR *, int); | 
|  | local void write_table32hi(FILE *, const z_word_t FAR *, int); | 
|  | local void write_table64(FILE *, const z_word_t FAR *, int); | 
|  | #endif /* MAKECRCH */ | 
|  |  | 
|  | /* | 
|  | Define a once() function depending on the availability of atomics. If this is | 
|  | compiled with DYNAMIC_CRC_TABLE defined, and if CRCs will be computed in | 
|  | multiple threads, and if atomics are not available, then get_crc_table() must | 
|  | be called to initialize the tables and must return before any threads are | 
|  | allowed to compute or combine CRCs. | 
|  | */ | 
|  |  | 
|  | /* Definition of once functionality. */ | 
|  | typedef struct once_s once_t; | 
|  |  | 
|  | /* Check for the availability of atomics. */ | 
|  | #if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \ | 
|  | !defined(__STDC_NO_ATOMICS__) | 
|  |  | 
|  | #include <stdatomic.h> | 
|  |  | 
|  | /* Structure for once(), which must be initialized with ONCE_INIT. */ | 
|  | struct once_s { | 
|  | atomic_flag begun; | 
|  | atomic_int done; | 
|  | }; | 
|  | #define ONCE_INIT {ATOMIC_FLAG_INIT, 0} | 
|  |  | 
|  | /* | 
|  | Run the provided init() function exactly once, even if multiple threads | 
|  | invoke once() at the same time. The state must be a once_t initialized with | 
|  | ONCE_INIT. | 
|  | */ | 
|  | local void once(once_t *state, void (*init)(void)) { | 
|  | if (!atomic_load(&state->done)) { | 
|  | if (atomic_flag_test_and_set(&state->begun)) | 
|  | while (!atomic_load(&state->done)) | 
|  | ; | 
|  | else { | 
|  | init(); | 
|  | atomic_store(&state->done, 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #else   /* no atomics */ | 
|  |  | 
|  | /* Structure for once(), which must be initialized with ONCE_INIT. */ | 
|  | struct once_s { | 
|  | volatile int begun; | 
|  | volatile int done; | 
|  | }; | 
|  | #define ONCE_INIT {0, 0} | 
|  |  | 
|  | /* Test and set. Alas, not atomic, but tries to minimize the period of | 
|  | vulnerability. */ | 
|  | local int test_and_set(int volatile *flag) { | 
|  | int was; | 
|  |  | 
|  | was = *flag; | 
|  | *flag = 1; | 
|  | return was; | 
|  | } | 
|  |  | 
|  | /* Run the provided init() function once. This is not thread-safe. */ | 
|  | local void once(once_t *state, void (*init)(void)) { | 
|  | if (!state->done) { | 
|  | if (test_and_set(&state->begun)) | 
|  | while (!state->done) | 
|  | ; | 
|  | else { | 
|  | init(); | 
|  | state->done = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* State for once(). */ | 
|  | local once_t made = ONCE_INIT; | 
|  |  | 
|  | /* | 
|  | Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: | 
|  | x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. | 
|  |  | 
|  | Polynomials over GF(2) are represented in binary, one bit per coefficient, | 
|  | with the lowest powers in the most significant bit. Then adding polynomials | 
|  | is just exclusive-or, and multiplying a polynomial by x is a right shift by | 
|  | one. If we call the above polynomial p, and represent a byte as the | 
|  | polynomial q, also with the lowest power in the most significant bit (so the | 
|  | byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p, | 
|  | where a mod b means the remainder after dividing a by b. | 
|  |  | 
|  | This calculation is done using the shift-register method of multiplying and | 
|  | taking the remainder. The register is initialized to zero, and for each | 
|  | incoming bit, x^32 is added mod p to the register if the bit is a one (where | 
|  | x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x | 
|  | (which is shifting right by one and adding x^32 mod p if the bit shifted out | 
|  | is a one). We start with the highest power (least significant bit) of q and | 
|  | repeat for all eight bits of q. | 
|  |  | 
|  | The table is simply the CRC of all possible eight bit values. This is all the | 
|  | information needed to generate CRCs on data a byte at a time for all | 
|  | combinations of CRC register values and incoming bytes. | 
|  | */ | 
|  |  | 
|  | local void make_crc_table(void) { | 
|  | unsigned i, j, n; | 
|  | z_crc_t p; | 
|  |  | 
|  | /* initialize the CRC of bytes tables */ | 
|  | for (i = 0; i < 256; i++) { | 
|  | p = i; | 
|  | for (j = 0; j < 8; j++) | 
|  | p = p & 1 ? (p >> 1) ^ POLY : p >> 1; | 
|  | crc_table[i] = p; | 
|  | #ifdef W | 
|  | crc_big_table[i] = byte_swap(p); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* initialize the x^2^n mod p(x) table */ | 
|  | p = (z_crc_t)1 << 30;         /* x^1 */ | 
|  | x2n_table[0] = p; | 
|  | for (n = 1; n < 32; n++) | 
|  | x2n_table[n] = p = multmodp(p, p); | 
|  |  | 
|  | #ifdef W | 
|  | /* initialize the braiding tables -- needs x2n_table[] */ | 
|  | braid(crc_braid_table, crc_braid_big_table, N, W); | 
|  | #endif | 
|  |  | 
|  | #ifdef MAKECRCH | 
|  | { | 
|  | /* | 
|  | The crc32.h header file contains tables for both 32-bit and 64-bit | 
|  | z_word_t's, and so requires a 64-bit type be available. In that case, | 
|  | z_word_t must be defined to be 64-bits. This code then also generates | 
|  | and writes out the tables for the case that z_word_t is 32 bits. | 
|  | */ | 
|  | #if !defined(W) || W != 8 | 
|  | #  error Need a 64-bit integer type in order to generate crc32.h. | 
|  | #endif | 
|  | FILE *out; | 
|  | int k, n; | 
|  | z_crc_t ltl[8][256]; | 
|  | z_word_t big[8][256]; | 
|  |  | 
|  | out = fopen("crc32.h", "w"); | 
|  | if (out == NULL) return; | 
|  |  | 
|  | /* write out little-endian CRC table to crc32.h */ | 
|  | fprintf(out, | 
|  | "/* crc32.h -- tables for rapid CRC calculation\n" | 
|  | " * Generated automatically by crc32.c\n */\n" | 
|  | "\n" | 
|  | "local const z_crc_t FAR crc_table[] = {\n" | 
|  | "    "); | 
|  | write_table(out, crc_table, 256); | 
|  | fprintf(out, | 
|  | "};\n"); | 
|  |  | 
|  | /* write out big-endian CRC table for 64-bit z_word_t to crc32.h */ | 
|  | fprintf(out, | 
|  | "\n" | 
|  | "#ifdef W\n" | 
|  | "\n" | 
|  | "#if W == 8\n" | 
|  | "\n" | 
|  | "local const z_word_t FAR crc_big_table[] = {\n" | 
|  | "    "); | 
|  | write_table64(out, crc_big_table, 256); | 
|  | fprintf(out, | 
|  | "};\n"); | 
|  |  | 
|  | /* write out big-endian CRC table for 32-bit z_word_t to crc32.h */ | 
|  | fprintf(out, | 
|  | "\n" | 
|  | "#else /* W == 4 */\n" | 
|  | "\n" | 
|  | "local const z_word_t FAR crc_big_table[] = {\n" | 
|  | "    "); | 
|  | write_table32hi(out, crc_big_table, 256); | 
|  | fprintf(out, | 
|  | "};\n" | 
|  | "\n" | 
|  | "#endif\n"); | 
|  |  | 
|  | /* write out braid tables for each value of N */ | 
|  | for (n = 1; n <= 6; n++) { | 
|  | fprintf(out, | 
|  | "\n" | 
|  | "#if N == %d\n", n); | 
|  |  | 
|  | /* compute braid tables for this N and 64-bit word_t */ | 
|  | braid(ltl, big, n, 8); | 
|  |  | 
|  | /* write out braid tables for 64-bit z_word_t to crc32.h */ | 
|  | fprintf(out, | 
|  | "\n" | 
|  | "#if W == 8\n" | 
|  | "\n" | 
|  | "local const z_crc_t FAR crc_braid_table[][256] = {\n"); | 
|  | for (k = 0; k < 8; k++) { | 
|  | fprintf(out, "   {"); | 
|  | write_table(out, ltl[k], 256); | 
|  | fprintf(out, "}%s", k < 7 ? ",\n" : ""); | 
|  | } | 
|  | fprintf(out, | 
|  | "};\n" | 
|  | "\n" | 
|  | "local const z_word_t FAR crc_braid_big_table[][256] = {\n"); | 
|  | for (k = 0; k < 8; k++) { | 
|  | fprintf(out, "   {"); | 
|  | write_table64(out, big[k], 256); | 
|  | fprintf(out, "}%s", k < 7 ? ",\n" : ""); | 
|  | } | 
|  | fprintf(out, | 
|  | "};\n"); | 
|  |  | 
|  | /* compute braid tables for this N and 32-bit word_t */ | 
|  | braid(ltl, big, n, 4); | 
|  |  | 
|  | /* write out braid tables for 32-bit z_word_t to crc32.h */ | 
|  | fprintf(out, | 
|  | "\n" | 
|  | "#else /* W == 4 */\n" | 
|  | "\n" | 
|  | "local const z_crc_t FAR crc_braid_table[][256] = {\n"); | 
|  | for (k = 0; k < 4; k++) { | 
|  | fprintf(out, "   {"); | 
|  | write_table(out, ltl[k], 256); | 
|  | fprintf(out, "}%s", k < 3 ? ",\n" : ""); | 
|  | } | 
|  | fprintf(out, | 
|  | "};\n" | 
|  | "\n" | 
|  | "local const z_word_t FAR crc_braid_big_table[][256] = {\n"); | 
|  | for (k = 0; k < 4; k++) { | 
|  | fprintf(out, "   {"); | 
|  | write_table32hi(out, big[k], 256); | 
|  | fprintf(out, "}%s", k < 3 ? ",\n" : ""); | 
|  | } | 
|  | fprintf(out, | 
|  | "};\n" | 
|  | "\n" | 
|  | "#endif\n" | 
|  | "\n" | 
|  | "#endif\n"); | 
|  | } | 
|  | fprintf(out, | 
|  | "\n" | 
|  | "#endif\n"); | 
|  |  | 
|  | /* write out zeros operator table to crc32.h */ | 
|  | fprintf(out, | 
|  | "\n" | 
|  | "local const z_crc_t FAR x2n_table[] = {\n" | 
|  | "    "); | 
|  | write_table(out, x2n_table, 32); | 
|  | fprintf(out, | 
|  | "};\n"); | 
|  | fclose(out); | 
|  | } | 
|  | #endif /* MAKECRCH */ | 
|  | } | 
|  |  | 
|  | #ifdef MAKECRCH | 
|  |  | 
|  | /* | 
|  | Write the 32-bit values in table[0..k-1] to out, five per line in | 
|  | hexadecimal separated by commas. | 
|  | */ | 
|  | local void write_table(FILE *out, const z_crc_t FAR *table, int k) { | 
|  | int n; | 
|  |  | 
|  | for (n = 0; n < k; n++) | 
|  | fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : "    ", | 
|  | (unsigned long)(table[n]), | 
|  | n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", ")); | 
|  | } | 
|  |  | 
|  | /* | 
|  | Write the high 32-bits of each value in table[0..k-1] to out, five per line | 
|  | in hexadecimal separated by commas. | 
|  | */ | 
|  | local void write_table32hi(FILE *out, const z_word_t FAR *table, int k) { | 
|  | int n; | 
|  |  | 
|  | for (n = 0; n < k; n++) | 
|  | fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : "    ", | 
|  | (unsigned long)(table[n] >> 32), | 
|  | n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", ")); | 
|  | } | 
|  |  | 
|  | /* | 
|  | Write the 64-bit values in table[0..k-1] to out, three per line in | 
|  | hexadecimal separated by commas. This assumes that if there is a 64-bit | 
|  | type, then there is also a long long integer type, and it is at least 64 | 
|  | bits. If not, then the type cast and format string can be adjusted | 
|  | accordingly. | 
|  | */ | 
|  | local void write_table64(FILE *out, const z_word_t FAR *table, int k) { | 
|  | int n; | 
|  |  | 
|  | for (n = 0; n < k; n++) | 
|  | fprintf(out, "%s0x%016llx%s", n == 0 || n % 3 ? "" : "    ", | 
|  | (unsigned long long)(table[n]), | 
|  | n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", ")); | 
|  | } | 
|  |  | 
|  | /* Actually do the deed. */ | 
|  | int main(void) { | 
|  | make_crc_table(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* MAKECRCH */ | 
|  |  | 
|  | #ifdef W | 
|  | /* | 
|  | Generate the little and big-endian braid tables for the given n and z_word_t | 
|  | size w. Each array must have room for w blocks of 256 elements. | 
|  | */ | 
|  | local void braid(z_crc_t ltl[][256], z_word_t big[][256], int n, int w) { | 
|  | int k; | 
|  | z_crc_t i, p, q; | 
|  | for (k = 0; k < w; k++) { | 
|  | p = x2nmodp((n * w + 3 - k) << 3, 0); | 
|  | ltl[k][0] = 0; | 
|  | big[w - 1 - k][0] = 0; | 
|  | for (i = 1; i < 256; i++) { | 
|  | ltl[k][i] = q = multmodp(i << 24, p); | 
|  | big[w - 1 - k][i] = byte_swap(q); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif /* DYNAMIC_CRC_TABLE */ | 
|  |  | 
|  | /* ========================================================================= | 
|  | * This function can be used by asm versions of crc32(), and to force the | 
|  | * generation of the CRC tables in a threaded application. | 
|  | */ | 
|  | const z_crc_t FAR * ZEXPORT get_crc_table(void) { | 
|  | #ifdef DYNAMIC_CRC_TABLE | 
|  | once(&made, make_crc_table); | 
|  | #endif /* DYNAMIC_CRC_TABLE */ | 
|  | return (const z_crc_t FAR *)crc_table; | 
|  | } | 
|  |  | 
|  | /* ========================================================================= | 
|  | * Use ARM machine instructions if available. This will compute the CRC about | 
|  | * ten times faster than the braided calculation. This code does not check for | 
|  | * the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will | 
|  | * only be defined if the compilation specifies an ARM processor architecture | 
|  | * that has the instructions. For example, compiling with -march=armv8.1-a or | 
|  | * -march=armv8-a+crc, or -march=native if the compile machine has the crc32 | 
|  | * instructions. | 
|  | */ | 
|  | #ifdef ARMCRC32 | 
|  |  | 
|  | /* | 
|  | Constants empirically determined to maximize speed. These values are from | 
|  | measurements on a Cortex-A57. Your mileage may vary. | 
|  | */ | 
|  | #define Z_BATCH 3990                /* number of words in a batch */ | 
|  | #define Z_BATCH_ZEROS 0xa10d3d0c    /* computed from Z_BATCH = 3990 */ | 
|  | #define Z_BATCH_MIN 800             /* fewest words in a final batch */ | 
|  |  | 
|  | unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf, | 
|  | z_size_t len) { | 
|  | z_crc_t val; | 
|  | z_word_t crc1, crc2; | 
|  | const z_word_t *word; | 
|  | z_word_t val0, val1, val2; | 
|  | z_size_t last, last2, i; | 
|  | z_size_t num; | 
|  |  | 
|  | /* Return initial CRC, if requested. */ | 
|  | if (buf == Z_NULL) return 0; | 
|  |  | 
|  | #ifdef DYNAMIC_CRC_TABLE | 
|  | once(&made, make_crc_table); | 
|  | #endif /* DYNAMIC_CRC_TABLE */ | 
|  |  | 
|  | /* Pre-condition the CRC */ | 
|  | crc = (~crc) & 0xffffffff; | 
|  |  | 
|  | /* Compute the CRC up to a word boundary. */ | 
|  | while (len && ((z_size_t)buf & 7) != 0) { | 
|  | len--; | 
|  | val = *buf++; | 
|  | __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val)); | 
|  | } | 
|  |  | 
|  | /* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */ | 
|  | word = (z_word_t const *)buf; | 
|  | num = len >> 3; | 
|  | len &= 7; | 
|  |  | 
|  | /* Do three interleaved CRCs to realize the throughput of one crc32x | 
|  | instruction per cycle. Each CRC is calculated on Z_BATCH words. The | 
|  | three CRCs are combined into a single CRC after each set of batches. */ | 
|  | while (num >= 3 * Z_BATCH) { | 
|  | crc1 = 0; | 
|  | crc2 = 0; | 
|  | for (i = 0; i < Z_BATCH; i++) { | 
|  | val0 = word[i]; | 
|  | val1 = word[i + Z_BATCH]; | 
|  | val2 = word[i + 2 * Z_BATCH]; | 
|  | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); | 
|  | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1)); | 
|  | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2)); | 
|  | } | 
|  | word += 3 * Z_BATCH; | 
|  | num -= 3 * Z_BATCH; | 
|  | crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc1; | 
|  | crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc2; | 
|  | } | 
|  |  | 
|  | /* Do one last smaller batch with the remaining words, if there are enough | 
|  | to pay for the combination of CRCs. */ | 
|  | last = num / 3; | 
|  | if (last >= Z_BATCH_MIN) { | 
|  | last2 = last << 1; | 
|  | crc1 = 0; | 
|  | crc2 = 0; | 
|  | for (i = 0; i < last; i++) { | 
|  | val0 = word[i]; | 
|  | val1 = word[i + last]; | 
|  | val2 = word[i + last2]; | 
|  | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); | 
|  | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1)); | 
|  | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2)); | 
|  | } | 
|  | word += 3 * last; | 
|  | num -= 3 * last; | 
|  | val = x2nmodp(last, 6); | 
|  | crc = multmodp(val, crc) ^ crc1; | 
|  | crc = multmodp(val, crc) ^ crc2; | 
|  | } | 
|  |  | 
|  | /* Compute the CRC on any remaining words. */ | 
|  | for (i = 0; i < num; i++) { | 
|  | val0 = word[i]; | 
|  | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); | 
|  | } | 
|  | word += num; | 
|  |  | 
|  | /* Complete the CRC on any remaining bytes. */ | 
|  | buf = (const unsigned char FAR *)word; | 
|  | while (len) { | 
|  | len--; | 
|  | val = *buf++; | 
|  | __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val)); | 
|  | } | 
|  |  | 
|  | /* Return the CRC, post-conditioned. */ | 
|  | return crc ^ 0xffffffff; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | #ifdef W | 
|  |  | 
|  | /* | 
|  | Return the CRC of the W bytes in the word_t data, taking the | 
|  | least-significant byte of the word as the first byte of data, without any pre | 
|  | or post conditioning. This is used to combine the CRCs of each braid. | 
|  | */ | 
|  | local z_crc_t crc_word(z_word_t data) { | 
|  | int k; | 
|  | for (k = 0; k < W; k++) | 
|  | data = (data >> 8) ^ crc_table[data & 0xff]; | 
|  | return (z_crc_t)data; | 
|  | } | 
|  |  | 
|  | local z_word_t crc_word_big(z_word_t data) { | 
|  | int k; | 
|  | for (k = 0; k < W; k++) | 
|  | data = (data << 8) ^ | 
|  | crc_big_table[(data >> ((W - 1) << 3)) & 0xff]; | 
|  | return data; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* ========================================================================= */ | 
|  | unsigned long ZEXPORT crc32_z(unsigned long crc, const unsigned char FAR *buf, | 
|  | z_size_t len) { | 
|  | /* Return initial CRC, if requested. */ | 
|  | if (buf == Z_NULL) return 0; | 
|  |  | 
|  | #ifdef DYNAMIC_CRC_TABLE | 
|  | once(&made, make_crc_table); | 
|  | #endif /* DYNAMIC_CRC_TABLE */ | 
|  |  | 
|  | /* Pre-condition the CRC */ | 
|  | crc = (~crc) & 0xffffffff; | 
|  |  | 
|  | #ifdef W | 
|  |  | 
|  | /* If provided enough bytes, do a braided CRC calculation. */ | 
|  | if (len >= N * W + W - 1) { | 
|  | z_size_t blks; | 
|  | z_word_t const *words; | 
|  | unsigned endian; | 
|  | int k; | 
|  |  | 
|  | /* Compute the CRC up to a z_word_t boundary. */ | 
|  | while (len && ((z_size_t)buf & (W - 1)) != 0) { | 
|  | len--; | 
|  | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | 
|  | } | 
|  |  | 
|  | /* Compute the CRC on as many N z_word_t blocks as are available. */ | 
|  | blks = len / (N * W); | 
|  | len -= blks * N * W; | 
|  | words = (z_word_t const *)buf; | 
|  |  | 
|  | /* Do endian check at execution time instead of compile time, since ARM | 
|  | processors can change the endianness at execution time. If the | 
|  | compiler knows what the endianness will be, it can optimize out the | 
|  | check and the unused branch. */ | 
|  | endian = 1; | 
|  | if (*(unsigned char *)&endian) { | 
|  | /* Little endian. */ | 
|  |  | 
|  | z_crc_t crc0; | 
|  | z_word_t word0; | 
|  | #if N > 1 | 
|  | z_crc_t crc1; | 
|  | z_word_t word1; | 
|  | #if N > 2 | 
|  | z_crc_t crc2; | 
|  | z_word_t word2; | 
|  | #if N > 3 | 
|  | z_crc_t crc3; | 
|  | z_word_t word3; | 
|  | #if N > 4 | 
|  | z_crc_t crc4; | 
|  | z_word_t word4; | 
|  | #if N > 5 | 
|  | z_crc_t crc5; | 
|  | z_word_t word5; | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* Initialize the CRC for each braid. */ | 
|  | crc0 = crc; | 
|  | #if N > 1 | 
|  | crc1 = 0; | 
|  | #if N > 2 | 
|  | crc2 = 0; | 
|  | #if N > 3 | 
|  | crc3 = 0; | 
|  | #if N > 4 | 
|  | crc4 = 0; | 
|  | #if N > 5 | 
|  | crc5 = 0; | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | Process the first blks-1 blocks, computing the CRCs on each braid | 
|  | independently. | 
|  | */ | 
|  | while (--blks) { | 
|  | /* Load the word for each braid into registers. */ | 
|  | word0 = crc0 ^ words[0]; | 
|  | #if N > 1 | 
|  | word1 = crc1 ^ words[1]; | 
|  | #if N > 2 | 
|  | word2 = crc2 ^ words[2]; | 
|  | #if N > 3 | 
|  | word3 = crc3 ^ words[3]; | 
|  | #if N > 4 | 
|  | word4 = crc4 ^ words[4]; | 
|  | #if N > 5 | 
|  | word5 = crc5 ^ words[5]; | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | words += N; | 
|  |  | 
|  | /* Compute and update the CRC for each word. The loop should | 
|  | get unrolled. */ | 
|  | crc0 = crc_braid_table[0][word0 & 0xff]; | 
|  | #if N > 1 | 
|  | crc1 = crc_braid_table[0][word1 & 0xff]; | 
|  | #if N > 2 | 
|  | crc2 = crc_braid_table[0][word2 & 0xff]; | 
|  | #if N > 3 | 
|  | crc3 = crc_braid_table[0][word3 & 0xff]; | 
|  | #if N > 4 | 
|  | crc4 = crc_braid_table[0][word4 & 0xff]; | 
|  | #if N > 5 | 
|  | crc5 = crc_braid_table[0][word5 & 0xff]; | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | for (k = 1; k < W; k++) { | 
|  | crc0 ^= crc_braid_table[k][(word0 >> (k << 3)) & 0xff]; | 
|  | #if N > 1 | 
|  | crc1 ^= crc_braid_table[k][(word1 >> (k << 3)) & 0xff]; | 
|  | #if N > 2 | 
|  | crc2 ^= crc_braid_table[k][(word2 >> (k << 3)) & 0xff]; | 
|  | #if N > 3 | 
|  | crc3 ^= crc_braid_table[k][(word3 >> (k << 3)) & 0xff]; | 
|  | #if N > 4 | 
|  | crc4 ^= crc_braid_table[k][(word4 >> (k << 3)) & 0xff]; | 
|  | #if N > 5 | 
|  | crc5 ^= crc_braid_table[k][(word5 >> (k << 3)) & 0xff]; | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | Process the last block, combining the CRCs of the N braids at the | 
|  | same time. | 
|  | */ | 
|  | crc = crc_word(crc0 ^ words[0]); | 
|  | #if N > 1 | 
|  | crc = crc_word(crc1 ^ words[1] ^ crc); | 
|  | #if N > 2 | 
|  | crc = crc_word(crc2 ^ words[2] ^ crc); | 
|  | #if N > 3 | 
|  | crc = crc_word(crc3 ^ words[3] ^ crc); | 
|  | #if N > 4 | 
|  | crc = crc_word(crc4 ^ words[4] ^ crc); | 
|  | #if N > 5 | 
|  | crc = crc_word(crc5 ^ words[5] ^ crc); | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | words += N; | 
|  | } | 
|  | else { | 
|  | /* Big endian. */ | 
|  |  | 
|  | z_word_t crc0, word0, comb; | 
|  | #if N > 1 | 
|  | z_word_t crc1, word1; | 
|  | #if N > 2 | 
|  | z_word_t crc2, word2; | 
|  | #if N > 3 | 
|  | z_word_t crc3, word3; | 
|  | #if N > 4 | 
|  | z_word_t crc4, word4; | 
|  | #if N > 5 | 
|  | z_word_t crc5, word5; | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* Initialize the CRC for each braid. */ | 
|  | crc0 = byte_swap(crc); | 
|  | #if N > 1 | 
|  | crc1 = 0; | 
|  | #if N > 2 | 
|  | crc2 = 0; | 
|  | #if N > 3 | 
|  | crc3 = 0; | 
|  | #if N > 4 | 
|  | crc4 = 0; | 
|  | #if N > 5 | 
|  | crc5 = 0; | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | Process the first blks-1 blocks, computing the CRCs on each braid | 
|  | independently. | 
|  | */ | 
|  | while (--blks) { | 
|  | /* Load the word for each braid into registers. */ | 
|  | word0 = crc0 ^ words[0]; | 
|  | #if N > 1 | 
|  | word1 = crc1 ^ words[1]; | 
|  | #if N > 2 | 
|  | word2 = crc2 ^ words[2]; | 
|  | #if N > 3 | 
|  | word3 = crc3 ^ words[3]; | 
|  | #if N > 4 | 
|  | word4 = crc4 ^ words[4]; | 
|  | #if N > 5 | 
|  | word5 = crc5 ^ words[5]; | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | words += N; | 
|  |  | 
|  | /* Compute and update the CRC for each word. The loop should | 
|  | get unrolled. */ | 
|  | crc0 = crc_braid_big_table[0][word0 & 0xff]; | 
|  | #if N > 1 | 
|  | crc1 = crc_braid_big_table[0][word1 & 0xff]; | 
|  | #if N > 2 | 
|  | crc2 = crc_braid_big_table[0][word2 & 0xff]; | 
|  | #if N > 3 | 
|  | crc3 = crc_braid_big_table[0][word3 & 0xff]; | 
|  | #if N > 4 | 
|  | crc4 = crc_braid_big_table[0][word4 & 0xff]; | 
|  | #if N > 5 | 
|  | crc5 = crc_braid_big_table[0][word5 & 0xff]; | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | for (k = 1; k < W; k++) { | 
|  | crc0 ^= crc_braid_big_table[k][(word0 >> (k << 3)) & 0xff]; | 
|  | #if N > 1 | 
|  | crc1 ^= crc_braid_big_table[k][(word1 >> (k << 3)) & 0xff]; | 
|  | #if N > 2 | 
|  | crc2 ^= crc_braid_big_table[k][(word2 >> (k << 3)) & 0xff]; | 
|  | #if N > 3 | 
|  | crc3 ^= crc_braid_big_table[k][(word3 >> (k << 3)) & 0xff]; | 
|  | #if N > 4 | 
|  | crc4 ^= crc_braid_big_table[k][(word4 >> (k << 3)) & 0xff]; | 
|  | #if N > 5 | 
|  | crc5 ^= crc_braid_big_table[k][(word5 >> (k << 3)) & 0xff]; | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | Process the last block, combining the CRCs of the N braids at the | 
|  | same time. | 
|  | */ | 
|  | comb = crc_word_big(crc0 ^ words[0]); | 
|  | #if N > 1 | 
|  | comb = crc_word_big(crc1 ^ words[1] ^ comb); | 
|  | #if N > 2 | 
|  | comb = crc_word_big(crc2 ^ words[2] ^ comb); | 
|  | #if N > 3 | 
|  | comb = crc_word_big(crc3 ^ words[3] ^ comb); | 
|  | #if N > 4 | 
|  | comb = crc_word_big(crc4 ^ words[4] ^ comb); | 
|  | #if N > 5 | 
|  | comb = crc_word_big(crc5 ^ words[5] ^ comb); | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | words += N; | 
|  | crc = byte_swap(comb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | Update the pointer to the remaining bytes to process. | 
|  | */ | 
|  | buf = (unsigned char const *)words; | 
|  | } | 
|  |  | 
|  | #endif /* W */ | 
|  |  | 
|  | /* Complete the computation of the CRC on any remaining bytes. */ | 
|  | while (len >= 8) { | 
|  | len -= 8; | 
|  | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | 
|  | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | 
|  | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | 
|  | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | 
|  | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | 
|  | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | 
|  | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | 
|  | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | 
|  | } | 
|  | while (len) { | 
|  | len--; | 
|  | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | 
|  | } | 
|  |  | 
|  | /* Return the CRC, post-conditioned. */ | 
|  | return crc ^ 0xffffffff; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* ========================================================================= */ | 
|  | unsigned long ZEXPORT crc32(unsigned long crc, const unsigned char FAR *buf, | 
|  | uInt len) { | 
|  | return crc32_z(crc, buf, len); | 
|  | } | 
|  |  | 
|  | /* ========================================================================= */ | 
|  | uLong ZEXPORT crc32_combine64(uLong crc1, uLong crc2, z_off64_t len2) { | 
|  | #ifdef DYNAMIC_CRC_TABLE | 
|  | once(&made, make_crc_table); | 
|  | #endif /* DYNAMIC_CRC_TABLE */ | 
|  | return multmodp(x2nmodp(len2, 3), crc1) ^ (crc2 & 0xffffffff); | 
|  | } | 
|  |  | 
|  | /* ========================================================================= */ | 
|  | uLong ZEXPORT crc32_combine(uLong crc1, uLong crc2, z_off_t len2) { | 
|  | return crc32_combine64(crc1, crc2, (z_off64_t)len2); | 
|  | } | 
|  |  | 
|  | /* ========================================================================= */ | 
|  | uLong ZEXPORT crc32_combine_gen64(z_off64_t len2) { | 
|  | #ifdef DYNAMIC_CRC_TABLE | 
|  | once(&made, make_crc_table); | 
|  | #endif /* DYNAMIC_CRC_TABLE */ | 
|  | return x2nmodp(len2, 3); | 
|  | } | 
|  |  | 
|  | /* ========================================================================= */ | 
|  | uLong ZEXPORT crc32_combine_gen(z_off_t len2) { | 
|  | return crc32_combine_gen64((z_off64_t)len2); | 
|  | } | 
|  |  | 
|  | /* ========================================================================= */ | 
|  | uLong ZEXPORT crc32_combine_op(uLong crc1, uLong crc2, uLong op) { | 
|  | return multmodp(op, crc1) ^ (crc2 & 0xffffffff); | 
|  | } |