Damien Martin-Guillerez | f88f4d8 | 2015-09-25 13:56:55 +0000 | [diff] [blame] | 1 | // Copyright 2014 The Bazel Authors. All rights reserved. |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | package com.google.devtools.build.lib.graph; |
| 16 | |
laurentlb | 3d2a68c | 2017-06-30 00:32:04 +0200 | [diff] [blame] | 17 | import static java.util.Comparator.comparing; |
| 18 | import static java.util.Comparator.comparingLong; |
| 19 | |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 20 | import com.google.common.base.Preconditions; |
Jonathan Bluett-Duncan | 0df3ddbd | 2017-08-09 11:13:54 +0200 | [diff] [blame] | 21 | import com.google.common.collect.ImmutableList; |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 22 | import com.google.common.collect.ImmutableSet; |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 23 | import java.util.ArrayList; |
| 24 | import java.util.Collection; |
| 25 | import java.util.Collections; |
| 26 | import java.util.Comparator; |
| 27 | import java.util.HashMap; |
| 28 | import java.util.HashSet; |
| 29 | import java.util.LinkedList; |
| 30 | import java.util.List; |
| 31 | import java.util.Map; |
| 32 | import java.util.PriorityQueue; |
| 33 | import java.util.Set; |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 34 | import java.util.concurrent.ConcurrentHashMap; |
Janak Ramakrishnan | 706bc72 | 2015-08-25 22:02:38 +0000 | [diff] [blame] | 35 | import javax.annotation.Nullable; |
| 36 | |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 37 | /** |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 38 | * {@code Digraph} a generic directed graph or "digraph", suitable for modeling asymmetric binary |
| 39 | * relations. |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 40 | * |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 41 | * <p>An instance <code>G = <V,E></code> consists of a set of nodes or vertices <code>V</code> |
| 42 | * , and a set of directed edges <code>E</code>, which is a subset of <code>V × V</code>. This |
| 43 | * permits self-edges but does not represent multiple edges between the same pair of nodes. |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 44 | * |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 45 | * <p>Nodes may be labeled with values of any type (type parameter T). All nodes within a graph have |
| 46 | * distinct labels. The null pointer is not a valid label. |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 47 | * |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 48 | * <p>The package supports various operations for modeling partial order relations, and supports |
| 49 | * input/output in AT&T's 'dot' format. See http://www.research.att.com/sw/tools/graphviz/. |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 50 | * |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 51 | * <p>Some invariants: |
| 52 | * |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 53 | * <ul> |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 54 | * <li>Each graph instances "owns" the nodes is creates. The behaviour of operations on nodes a |
| 55 | * graph does not own is undefined. |
| 56 | * <li>{@code Digraph} assumes immutability of node labels, much like {@link HashMap} assumes it |
| 57 | * for keys. |
| 58 | * <li>Mutating the underlying graph invalidates any sets and iterators backed by it. |
| 59 | * <li>Nodes can be added and removed concurrently. Edges can be added and removed concurrently |
| 60 | * too. While it is thread safe to add or remove edge, these operations are not atomic. Graph |
| 61 | * can be observable in inconsistent state during this operations, for instance: edge linked |
| 62 | * to only one node. |
| 63 | * <li> |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 64 | * </ul> |
| 65 | * |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 66 | * <p>Each node stores successor and predecessor adjacency sets using a representation that |
| 67 | * dynamically changes with size: small sets are stored as arrays, large sets using hash tables. |
| 68 | * This representation provides significant space and time performance improvements upon two prior |
| 69 | * versions: the earliest used only HashSets; a later version used linked lists, as described in |
| 70 | * Cormen, Leiserson & Rivest. |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 71 | */ |
| 72 | public final class Digraph<T> implements Cloneable { |
| 73 | |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 74 | /** Maps labels to nodes, which are in strict 1:1 correspondence. */ |
| 75 | private final Map<T, Node<T>> nodes = new ConcurrentHashMap<>(); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 76 | |
| 77 | /** |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 78 | * Construct an empty Digraph. |
| 79 | */ |
| 80 | public Digraph() {} |
| 81 | |
| 82 | /** |
| 83 | * Sanity-check: assert that a node is indeed a member of this graph and not |
| 84 | * another one. Perform this check whenever a function is supplied a node by |
| 85 | * the user. |
| 86 | */ |
| 87 | private final void checkNode(Node<T> node) { |
| 88 | if (getNode(node.getLabel()) != node) { |
| 89 | throw new IllegalArgumentException("node " + node |
| 90 | + " is not a member of this graph"); |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | /** |
| 95 | * Adds a directed edge between the nodes labelled 'from' and 'to', creating |
| 96 | * them if necessary. |
| 97 | * |
| 98 | * @return true iff the edge was not already present. |
| 99 | */ |
| 100 | public boolean addEdge(T from, T to) { |
| 101 | Node<T> fromNode = createNode(from); |
| 102 | Node<T> toNode = createNode(to); |
| 103 | return addEdge(fromNode, toNode); |
| 104 | } |
| 105 | |
| 106 | /** |
| 107 | * Adds a directed edge between the specified nodes, which must exist and |
| 108 | * belong to this graph. |
| 109 | * |
| 110 | * @return true iff the edge was not already present. |
| 111 | * |
| 112 | * Note: multi-edges are ignored. Self-edges are permitted. |
| 113 | */ |
| 114 | public boolean addEdge(Node<T> fromNode, Node<T> toNode) { |
| 115 | checkNode(fromNode); |
| 116 | checkNode(toNode); |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 117 | return fromNode.addEdge(toNode); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 118 | } |
| 119 | |
| 120 | /** |
| 121 | * Returns true iff the graph contains an edge between the |
| 122 | * specified nodes, which must exist and belong to this graph. |
| 123 | */ |
| 124 | public boolean containsEdge(Node<T> fromNode, Node<T> toNode) { |
| 125 | checkNode(fromNode); |
| 126 | checkNode(toNode); |
| 127 | // TODO(bazel-team): (2009) iterate only over the shorter of from.succs, to.preds. |
| 128 | return fromNode.getSuccessors().contains(toNode); |
| 129 | } |
| 130 | |
| 131 | /** |
| 132 | * Removes the edge between the specified nodes. Idempotent: attempts to |
| 133 | * remove non-existent edges have no effect. |
| 134 | * |
| 135 | * @return true iff graph changed. |
| 136 | */ |
| 137 | public boolean removeEdge(Node<T> fromNode, Node<T> toNode) { |
| 138 | checkNode(fromNode); |
| 139 | checkNode(toNode); |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 140 | return fromNode.removeEdge(toNode); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 141 | } |
| 142 | |
| 143 | /** |
| 144 | * Remove all nodes and edges. |
| 145 | */ |
| 146 | public void clear() { |
| 147 | nodes.clear(); |
| 148 | } |
| 149 | |
| 150 | @Override |
| 151 | public String toString() { |
| 152 | return "Digraph[" + getNodeCount() + " nodes]"; |
| 153 | } |
| 154 | |
| 155 | @Override |
| 156 | public int hashCode() { |
| 157 | throw new UnsupportedOperationException(); // avoid nondeterminism |
| 158 | } |
| 159 | |
| 160 | /** |
| 161 | * Returns true iff the two graphs are equivalent, i.e. have the same set |
| 162 | * of node labels, with the same connectivity relation. |
| 163 | * |
| 164 | * O(n^2) in the worst case, i.e. equivalence. The algorithm could be speed up by |
| 165 | * close to a factor 2 in the worst case by a more direct implementation instead |
| 166 | * of using isSubgraph twice. |
| 167 | */ |
| 168 | @Override |
| 169 | public boolean equals(Object thatObject) { |
| 170 | /* If this graph is a subgraph of thatObject, then we know that thatObject is of |
| 171 | * type Digraph<?> and thatObject can be cast to this type. |
| 172 | */ |
| 173 | return isSubgraph(thatObject) && ((Digraph<?>) thatObject).isSubgraph(this); |
| 174 | } |
| 175 | |
| 176 | /** |
| 177 | * Returns true iff this graph is a subgraph of the argument. This means that this graph's nodes |
| 178 | * are a subset of those of the argument; moreover, for each node of this graph the set of |
| 179 | * successors is a subset of those of the corresponding node in the argument graph. |
| 180 | * |
| 181 | * This algorithm is O(n^2), but linear in the total sizes of the graphs. |
| 182 | */ |
| 183 | public boolean isSubgraph(Object thatObject) { |
| 184 | if (this == thatObject) { |
| 185 | return true; |
| 186 | } |
| 187 | if (!(thatObject instanceof Digraph)) { |
| 188 | return false; |
| 189 | } |
| 190 | |
| 191 | @SuppressWarnings("unchecked") |
| 192 | Digraph<T> that = (Digraph<T>) thatObject; |
| 193 | if (this.getNodeCount() > that.getNodeCount()) { |
| 194 | return false; |
| 195 | } |
| 196 | for (Node<T> n1: nodes.values()) { |
| 197 | Node<T> n2 = that.getNodeMaybe(n1.getLabel()); |
| 198 | if (n2 == null) { |
| 199 | return false; // 'that' is missing a node |
| 200 | } |
| 201 | |
| 202 | // Now compare the successor relations. |
| 203 | // Careful: |
| 204 | // - We can't do simple equality on the succs-sets because the |
| 205 | // nodes belong to two different graphs! |
| 206 | // - There's no need to check both predecessor and successor |
| 207 | // relations, either one is sufficient. |
| 208 | Collection<Node<T>> n1succs = n1.getSuccessors(); |
| 209 | Collection<Node<T>> n2succs = n2.getSuccessors(); |
| 210 | if (n1succs.size() > n2succs.size()) { |
| 211 | return false; |
| 212 | } |
| 213 | // foreach successor of n1, ensure n2 has a similarly-labeled succ. |
| 214 | for (Node<T> succ1: n1succs) { |
| 215 | Node<T> succ2 = that.getNodeMaybe(succ1.getLabel()); |
| 216 | if (succ2 == null) { |
| 217 | return false; |
| 218 | } |
| 219 | if (!n2succs.contains(succ2)) { |
| 220 | return false; |
| 221 | } |
| 222 | } |
| 223 | } |
| 224 | return true; |
| 225 | } |
| 226 | |
| 227 | /** |
| 228 | * Returns a duplicate graph with the same set of node labels and the same |
| 229 | * connectivity relation. The labels themselves are not cloned. |
| 230 | */ |
| 231 | @Override |
| 232 | public Digraph<T> clone() { |
| 233 | final Digraph<T> that = new Digraph<T>(); |
Janak Ramakrishnan | 706bc72 | 2015-08-25 22:02:38 +0000 | [diff] [blame] | 234 | visitNodesBeforeEdges( |
| 235 | new AbstractGraphVisitor<T>() { |
| 236 | @Override |
| 237 | public void visitEdge(Node<T> lhs, Node<T> rhs) { |
| 238 | that.addEdge(lhs.getLabel(), rhs.getLabel()); |
| 239 | } |
| 240 | |
| 241 | @Override |
| 242 | public void visitNode(Node<T> node) { |
| 243 | that.createNode(node.getLabel()); |
| 244 | } |
| 245 | }, |
| 246 | nodes.values(), |
| 247 | null); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 248 | return that; |
| 249 | } |
| 250 | |
Jonathan Bluett-Duncan | 0df3ddbd | 2017-08-09 11:13:54 +0200 | [diff] [blame] | 251 | /** Returns a deterministic immutable copy of the nodes of this graph. */ |
Janak Ramakrishnan | 706bc72 | 2015-08-25 22:02:38 +0000 | [diff] [blame] | 252 | public Collection<Node<T>> getNodes(final Comparator<? super T> comparator) { |
Jonathan Bluett-Duncan | 0df3ddbd | 2017-08-09 11:13:54 +0200 | [diff] [blame] | 253 | return ImmutableList.sortedCopyOf(comparing(Node::getLabel, comparator), nodes.values()); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 254 | } |
| 255 | |
| 256 | /** |
| 257 | * Returns an immutable view of the nodes of this graph. |
| 258 | * |
| 259 | * Note: we have to return Collection and not Set because values() returns |
| 260 | * one: the 'nodes' HashMap doesn't know that it is injective. :-( |
| 261 | */ |
| 262 | public Collection<Node<T>> getNodes() { |
| 263 | return Collections.unmodifiableCollection(nodes.values()); |
| 264 | } |
| 265 | |
| 266 | /** |
| 267 | * @return the set of root nodes: those with no predecessors. |
| 268 | * |
| 269 | * NOTE: in a cyclic graph, there may be nodes that are not reachable from |
| 270 | * any "root". |
| 271 | */ |
| 272 | public Set<Node<T>> getRoots() { |
Ulf Adams | 07dba94 | 2015-03-05 14:47:37 +0000 | [diff] [blame] | 273 | Set<Node<T>> roots = new HashSet<>(); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 274 | for (Node<T> node: nodes.values()) { |
| 275 | if (!node.hasPredecessors()) { |
| 276 | roots.add(node); |
| 277 | } |
| 278 | } |
| 279 | return roots; |
| 280 | } |
| 281 | |
| 282 | /** |
| 283 | * @return the set of leaf nodes: those with no successors. |
| 284 | */ |
| 285 | public Set<Node<T>> getLeaves() { |
Ulf Adams | 07dba94 | 2015-03-05 14:47:37 +0000 | [diff] [blame] | 286 | Set<Node<T>> leaves = new HashSet<>(); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 287 | for (Node<T> node: nodes.values()) { |
| 288 | if (!node.hasSuccessors()) { |
| 289 | leaves.add(node); |
| 290 | } |
| 291 | } |
| 292 | return leaves; |
| 293 | } |
| 294 | |
| 295 | /** |
| 296 | * @return an immutable view of the set of labels of this graph's nodes. |
| 297 | */ |
| 298 | public Set<T> getLabels() { |
| 299 | return Collections.unmodifiableSet(nodes.keySet()); |
| 300 | } |
| 301 | |
| 302 | /** |
| 303 | * Finds and returns the node with the specified label. If there is no such |
| 304 | * node, an exception is thrown. The null pointer is not a valid label. |
| 305 | * |
| 306 | * @return the node whose label is "label". |
| 307 | * @throws IllegalArgumentException if no node was found with the specified |
| 308 | * label. |
| 309 | */ |
| 310 | public Node<T> getNode(T label) { |
| 311 | if (label == null) { |
| 312 | throw new NullPointerException(); |
| 313 | } |
| 314 | Node<T> node = nodes.get(label); |
| 315 | if (node == null) { |
| 316 | throw new IllegalArgumentException("No such node label: " + label); |
| 317 | } |
| 318 | return node; |
| 319 | } |
| 320 | |
| 321 | /** |
| 322 | * Find the node with the specified label. Returns null if it doesn't exist. |
| 323 | * The null pointer is not a valid label. |
| 324 | * |
| 325 | * @return the node whose label is "label", or null if it was not found. |
| 326 | */ |
| 327 | public Node<T> getNodeMaybe(T label) { |
| 328 | if (label == null) { |
| 329 | throw new NullPointerException(); |
| 330 | } |
| 331 | return nodes.get(label); |
| 332 | } |
| 333 | |
| 334 | /** |
| 335 | * @return the number of nodes in the graph. |
| 336 | */ |
| 337 | public int getNodeCount() { |
| 338 | return nodes.size(); |
| 339 | } |
| 340 | |
| 341 | /** |
| 342 | * @return the number of edges in the graph. |
| 343 | * |
| 344 | * Note: expensive! Useful when asserting against mutations though. |
| 345 | */ |
| 346 | public int getEdgeCount() { |
| 347 | int edges = 0; |
| 348 | for (Node<T> node: nodes.values()) { |
| 349 | edges += node.getSuccessors().size(); |
| 350 | } |
| 351 | return edges; |
| 352 | } |
| 353 | |
| 354 | /** |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 355 | * Find or create a node with the specified label. This is the <i>only</i> factory of Nodes. The |
| 356 | * null pointer is not a valid label. |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 357 | */ |
| 358 | public Node<T> createNode(T label) { |
dbabkin | c90d4b5 | 2018-04-20 00:14:15 -0700 | [diff] [blame] | 359 | return nodes.computeIfAbsent(label, Digraph::createNodeNative); |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 360 | } |
| 361 | |
dbabkin | c90d4b5 | 2018-04-20 00:14:15 -0700 | [diff] [blame] | 362 | private static <T> Node<T> createNodeNative(T label) { |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 363 | Preconditions.checkNotNull(label); |
| 364 | return new Node<>(label); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 365 | } |
| 366 | |
| 367 | /****************************************************************** |
| 368 | * * |
| 369 | * Graph Algorithms * |
| 370 | * * |
| 371 | ******************************************************************/ |
| 372 | |
| 373 | /** |
| 374 | * These only manipulate the graph through methods defined above. |
| 375 | */ |
| 376 | |
| 377 | /** |
| 378 | * Returns true iff the graph is cyclic. Time: O(n). |
| 379 | */ |
| 380 | public boolean isCyclic() { |
| 381 | |
| 382 | // To detect cycles, we use a colored depth-first search. All nodes are |
| 383 | // initially marked white. When a node is encountered, it is marked grey, |
| 384 | // and when its descendants are completely visited, it is marked black. |
| 385 | // If a grey node is ever encountered, then there is a cycle. |
| 386 | final Object WHITE = null; // i.e. not present in nodeToColor, the default. |
| 387 | final Object GREY = new Object(); |
| 388 | final Object BLACK = new Object(); |
Ulf Adams | 07dba94 | 2015-03-05 14:47:37 +0000 | [diff] [blame] | 389 | final Map<Node<T>, Object> nodeToColor = new HashMap<>(); // empty => all white |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 390 | |
| 391 | class CycleDetector { /* defining a class gives us lexical scope */ |
| 392 | boolean visit(Node<T> node) { |
| 393 | nodeToColor.put(node, GREY); |
| 394 | for (Node<T> succ: node.getSuccessors()) { |
| 395 | if (nodeToColor.get(succ) == GREY) { |
| 396 | return true; |
| 397 | } else if (nodeToColor.get(succ) == WHITE) { |
| 398 | if (visit(succ)) { |
| 399 | return true; |
| 400 | } |
| 401 | } |
| 402 | } |
| 403 | nodeToColor.put(node, BLACK); |
| 404 | return false; |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | CycleDetector detector = new CycleDetector(); |
| 409 | for (Node<T> node: nodes.values()) { |
| 410 | if (nodeToColor.get(node) == WHITE) { |
| 411 | if (detector.visit(node)) { |
| 412 | return true; |
| 413 | } |
| 414 | } |
| 415 | } |
| 416 | return false; |
| 417 | } |
| 418 | |
| 419 | /** |
| 420 | * Returns the strong component graph of "this". That is, returns a new |
| 421 | * acyclic graph in which all strongly-connected components in the original |
| 422 | * graph have been "fused" into a single node. |
| 423 | * |
| 424 | * @return a new graph, whose node labels are sets of nodes of the |
| 425 | * original graph. (Do not get confused as to which graph each |
| 426 | * set of Nodes belongs!) |
| 427 | */ |
| 428 | public Digraph<Set<Node<T>>> getStrongComponentGraph() { |
| 429 | Collection<Set<Node<T>>> sccs = getStronglyConnectedComponents(); |
| 430 | Digraph<Set<Node<T>>> scGraph = createImageUnderPartition(sccs); |
| 431 | scGraph.removeSelfEdges(); // scGraph should be acyclic: no self-edges |
| 432 | return scGraph; |
| 433 | } |
| 434 | |
| 435 | /** |
| 436 | * Returns a partition of the nodes of this graph into sets, each set being |
| 437 | * one strongly-connected component of the graph. |
| 438 | */ |
| 439 | public Collection<Set<Node<T>>> getStronglyConnectedComponents() { |
Ulf Adams | 07dba94 | 2015-03-05 14:47:37 +0000 | [diff] [blame] | 440 | final List<Set<Node<T>>> sccs = new ArrayList<>(); |
Jonathan Bluett-Duncan | 0df3ddbd | 2017-08-09 11:13:54 +0200 | [diff] [blame] | 441 | NodeSetReceiver<T> r = sccs::add; |
| 442 | SccVisitor<T> v = new SccVisitor<>(); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 443 | for (Node<T> node : nodes.values()) { |
| 444 | v.visit(r, node); |
| 445 | } |
| 446 | return sccs; |
| 447 | } |
| 448 | |
| 449 | /** |
| 450 | * <p> Given a partition of the graph into sets of nodes, returns the image |
| 451 | * of this graph under the function which maps each node to the |
| 452 | * partition-set in which it appears. The labels of the new graph are the |
| 453 | * (immutable) sets of the partition, and the edges of the new graph are the |
| 454 | * edges of the original graph, mapped via the same function. </p> |
| 455 | * |
| 456 | * <p> Note: the resulting graph may contain self-edges. If these are not |
| 457 | * wanted, call <code>removeSelfEdges()</code>> on the result. </p> |
| 458 | * |
| 459 | * <p> Interesting special case: if the partition is the set of |
| 460 | * strongly-connected components, the result of this function is the |
| 461 | * strong-component graph. </p> |
| 462 | */ |
| 463 | public Digraph<Set<Node<T>>> |
| 464 | createImageUnderPartition(Collection<Set<Node<T>>> partition) { |
| 465 | |
| 466 | // Build mapping function: each node label is mapped to its equiv class: |
Ulf Adams | 07dba94 | 2015-03-05 14:47:37 +0000 | [diff] [blame] | 467 | Map<T, Set<Node<T>>> labelToImage = new HashMap<>(); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 468 | for (Set<Node<T>> set: partition) { |
| 469 | // It's important to use immutable sets of node labels when sets are keys |
| 470 | // in a map; see ImmutableSet class for explanation. |
| 471 | Set<Node<T>> imageSet = ImmutableSet.copyOf(set); |
| 472 | for (Node<T> node: imageSet) { |
| 473 | labelToImage.put(node.getLabel(), imageSet); |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | if (labelToImage.size() != getNodeCount()) { |
| 478 | throw new IllegalArgumentException( |
| 479 | "createImageUnderPartition(): argument is not a partition"); |
| 480 | } |
| 481 | |
| 482 | return createImageUnderMapping(labelToImage); |
| 483 | } |
| 484 | |
| 485 | /** |
| 486 | * Returns the image of this graph in a given function, expressed as a |
| 487 | * mapping from labels to some other domain. |
| 488 | */ |
| 489 | public <IMAGE> Digraph<IMAGE> |
| 490 | createImageUnderMapping(Map<T, IMAGE> map) { |
Ulf Adams | 07dba94 | 2015-03-05 14:47:37 +0000 | [diff] [blame] | 491 | Digraph<IMAGE> imageGraph = new Digraph<>(); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 492 | |
| 493 | for (Node<T> fromNode: nodes.values()) { |
| 494 | T fromLabel = fromNode.getLabel(); |
| 495 | |
| 496 | IMAGE fromImage = map.get(fromLabel); |
| 497 | if (fromImage == null) { |
| 498 | throw new IllegalArgumentException( |
| 499 | "Incomplete function: undefined for " + fromLabel); |
| 500 | } |
| 501 | imageGraph.createNode(fromImage); |
| 502 | |
| 503 | for (Node<T> toNode: fromNode.getSuccessors()) { |
| 504 | T toLabel = toNode.getLabel(); |
| 505 | |
| 506 | IMAGE toImage = map.get(toLabel); |
| 507 | if (toImage == null) { |
| 508 | throw new IllegalArgumentException( |
| 509 | "Incomplete function: undefined for " + toLabel); |
| 510 | } |
| 511 | imageGraph.addEdge(fromImage, toImage); |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | return imageGraph; |
| 516 | } |
| 517 | |
| 518 | /** |
| 519 | * Removes any self-edges (x,x) in this graph. |
| 520 | */ |
| 521 | public void removeSelfEdges() { |
| 522 | for (Node<T> node: nodes.values()) { |
| 523 | removeEdge(node, node); |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | /** |
| 528 | * Finds the shortest directed path from "fromNode" to "toNode". The path is |
| 529 | * returned as an ordered list of nodes, including both endpoints. Returns |
| 530 | * null if there is no path. Uses breadth-first search. Running time is |
| 531 | * O(n). |
| 532 | */ |
| 533 | public List<Node<T>> getShortestPath(Node<T> fromNode, |
| 534 | Node<T> toNode) { |
| 535 | checkNode(fromNode); |
| 536 | checkNode(toNode); |
| 537 | |
| 538 | if (fromNode == toNode) { |
| 539 | return Collections.singletonList(fromNode); |
| 540 | } |
| 541 | |
Ulf Adams | 07dba94 | 2015-03-05 14:47:37 +0000 | [diff] [blame] | 542 | Map<Node<T>, Node<T>> pathPredecessor = new HashMap<>(); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 543 | |
Ulf Adams | 07dba94 | 2015-03-05 14:47:37 +0000 | [diff] [blame] | 544 | Set<Node<T>> marked = new HashSet<>(); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 545 | |
Ulf Adams | 07dba94 | 2015-03-05 14:47:37 +0000 | [diff] [blame] | 546 | LinkedList<Node<T>> queue = new LinkedList<>(); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 547 | queue.addLast(fromNode); |
| 548 | marked.add(fromNode); |
| 549 | |
Ulf Adams | 07dba94 | 2015-03-05 14:47:37 +0000 | [diff] [blame] | 550 | while (!queue.isEmpty()) { |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 551 | Node<T> u = queue.removeFirst(); |
| 552 | for (Node<T> v: u.getSuccessors()) { |
| 553 | if (marked.add(v)) { |
| 554 | pathPredecessor.put(v, u); |
| 555 | if (v == toNode) { |
| 556 | return getPathToTreeNode(pathPredecessor, v); // found a path |
| 557 | } |
| 558 | queue.addLast(v); |
| 559 | } |
| 560 | } |
| 561 | } |
| 562 | return null; // no path |
| 563 | } |
| 564 | |
| 565 | /** |
| 566 | * Given a tree (expressed as a map from each node to its parent), and a |
| 567 | * starting node, returns the path from the root of the tree to 'node' as a |
| 568 | * list. |
| 569 | */ |
Janak Ramakrishnan | e72d522 | 2015-02-26 17:09:18 +0000 | [diff] [blame] | 570 | public static <X> List<X> getPathToTreeNode(Map<X, X> tree, X node) { |
Jonathan Bluett-Duncan | 0df3ddbd | 2017-08-09 11:13:54 +0200 | [diff] [blame] | 571 | List<X> path = new ArrayList<>(); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 572 | while (node != null) { |
| 573 | path.add(node); |
| 574 | node = tree.get(node); // get parent |
| 575 | } |
| 576 | Collections.reverse(path); |
| 577 | return path; |
| 578 | } |
| 579 | |
| 580 | /** |
| 581 | * Returns the nodes of an acyclic graph in topological order |
| 582 | * [a.k.a "reverse post-order" of depth-first search.] |
| 583 | * |
| 584 | * A topological order is one such that, if (u, v) is a path in |
| 585 | * acyclic graph G, then u is before v in the topological order. |
| 586 | * In other words "tails before heads" or "roots before leaves". |
| 587 | * |
| 588 | * @return The nodes of the graph, in a topological order |
| 589 | */ |
| 590 | public List<Node<T>> getTopologicalOrder() { |
| 591 | List<Node<T>> order = getPostorder(); |
| 592 | Collections.reverse(order); |
| 593 | return order; |
| 594 | } |
| 595 | |
| 596 | /** |
| 597 | * Returns the nodes of an acyclic graph in topological order |
| 598 | * [a.k.a "reverse post-order" of depth-first search.] |
| 599 | * |
| 600 | * A topological order is one such that, if (u, v) is a path in |
| 601 | * acyclic graph G, then u is before v in the topological order. |
| 602 | * In other words "tails before heads" or "roots before leaves". |
| 603 | * |
| 604 | * If an ordering is given, returns a specific topological order from the set |
| 605 | * of all topological orders; if no ordering given, returns an arbitrary |
| 606 | * (nondeterministic) one, but is a bit faster because no sorting needs to be |
| 607 | * done for each node. |
| 608 | * |
| 609 | * @param edgeOrder the ordering in which edges originating from the same node |
| 610 | * are visited. |
| 611 | * @return The nodes of the graph, in a topological order |
| 612 | */ |
Janak Ramakrishnan | 706bc72 | 2015-08-25 22:02:38 +0000 | [diff] [blame] | 613 | public List<Node<T>> getTopologicalOrder(Comparator<? super T> edgeOrder) { |
Jonathan Bluett-Duncan | 0df3ddbd | 2017-08-09 11:13:54 +0200 | [diff] [blame] | 614 | CollectingVisitor<T> visitor = new CollectingVisitor<>(); |
| 615 | DFS<T> visitation = new DFS<>(DFS.Order.POSTORDER, edgeOrder, false); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 616 | visitor.beginVisit(); |
| 617 | for (Node<T> node : getNodes(edgeOrder)) { |
| 618 | visitation.visit(node, visitor); |
| 619 | } |
| 620 | visitor.endVisit(); |
| 621 | |
| 622 | List<Node<T>> order = visitor.getVisitedNodes(); |
| 623 | Collections.reverse(order); |
| 624 | return order; |
| 625 | } |
| 626 | |
| 627 | /** |
| 628 | * Returns the nodes of an acyclic graph in post-order. |
| 629 | */ |
| 630 | public List<Node<T>> getPostorder() { |
Jonathan Bluett-Duncan | 0df3ddbd | 2017-08-09 11:13:54 +0200 | [diff] [blame] | 631 | CollectingVisitor<T> collectingVisitor = new CollectingVisitor<>(); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 632 | visitPostorder(collectingVisitor); |
| 633 | return collectingVisitor.getVisitedNodes(); |
| 634 | } |
| 635 | |
| 636 | /** |
| 637 | * Returns the (immutable) set of nodes reachable from node 'n' (reflexive |
| 638 | * transitive closure). |
| 639 | */ |
| 640 | public Set<Node<T>> getFwdReachable(Node<T> n) { |
| 641 | return getFwdReachable(Collections.singleton(n)); |
| 642 | } |
| 643 | |
| 644 | /** |
| 645 | * Returns the (immutable) set of nodes reachable from any node in {@code |
| 646 | * startNodes} (reflexive transitive closure). |
| 647 | */ |
| 648 | public Set<Node<T>> getFwdReachable(Collection<Node<T>> startNodes) { |
| 649 | // This method is intentionally not static, to permit future expansion. |
| 650 | DFS<T> dfs = new DFS<T>(DFS.Order.PREORDER, false); |
| 651 | for (Node<T> n : startNodes) { |
Jonathan Bluett-Duncan | 0df3ddbd | 2017-08-09 11:13:54 +0200 | [diff] [blame] | 652 | dfs.visit(n, new AbstractGraphVisitor<>()); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 653 | } |
| 654 | return dfs.getMarked(); |
| 655 | } |
| 656 | |
| 657 | /** |
| 658 | * Returns the (immutable) set of nodes that reach node 'n' (reflexive |
| 659 | * transitive closure). |
| 660 | */ |
| 661 | public Set<Node<T>> getBackReachable(Node<T> n) { |
| 662 | return getBackReachable(Collections.singleton(n)); |
| 663 | } |
| 664 | |
| 665 | /** |
| 666 | * Returns the (immutable) set of nodes that reach some node in {@code |
| 667 | * startNodes} (reflexive transitive closure). |
| 668 | */ |
| 669 | public Set<Node<T>> getBackReachable(Collection<Node<T>> startNodes) { |
| 670 | // This method is intentionally not static, to permit future expansion. |
| 671 | DFS<T> dfs = new DFS<T>(DFS.Order.PREORDER, true); |
| 672 | for (Node<T> n : startNodes) { |
Jonathan Bluett-Duncan | 0df3ddbd | 2017-08-09 11:13:54 +0200 | [diff] [blame] | 673 | dfs.visit(n, new AbstractGraphVisitor<>()); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 674 | } |
| 675 | return dfs.getMarked(); |
| 676 | } |
| 677 | |
| 678 | /** |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 679 | * Removes the specified node in the graph. |
| 680 | * |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 681 | * <p>If preserveOrder flag is set than after removing node this method connects all predecessors |
| 682 | * and successors. |
| 683 | * |
| 684 | * <p>Let's consider graph |
| 685 | * |
| 686 | * <pre> |
| 687 | * a -> n -> c |
| 688 | * b -> n -> d |
| 689 | * </pre> |
| 690 | * |
| 691 | * After n removed the following edges will be added |
| 692 | * |
| 693 | * <pre> |
| 694 | * a -> c |
| 695 | * a -> d |
| 696 | * b -> c |
| 697 | * b -> d |
| 698 | * </pre> |
| 699 | * |
| 700 | * @param node the node to remove (must be in the graph). |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 701 | * @param preserveOrder see removeNode(T, boolean). |
| 702 | */ |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 703 | public Collection<Node<T>> removeNode(Node<T> node, boolean preserveOrder) { |
| 704 | checkNode(node); |
| 705 | |
| 706 | Collection<Node<T>> predecessors = node.removeAllPredecessors(); |
| 707 | Collection<Node<T>> successors = node.removeAllSuccessors(); |
| 708 | |
| 709 | List<Node<T>> neighbours = Collections.emptyList(); |
| 710 | |
| 711 | if (preserveOrder) { |
| 712 | neighbours = new ArrayList<>(successors.size() + predecessors.size()); |
| 713 | neighbours.addAll(successors); |
| 714 | neighbours.addAll(predecessors); |
| 715 | |
| 716 | for (Node<T> p : predecessors) { |
| 717 | for (Node<T> s : successors) { |
| 718 | p.addEdge(s); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 719 | } |
| 720 | } |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 721 | } |
| 722 | |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 723 | Object del = nodes.remove(node.getLabel()); |
| 724 | if (del != node) { |
| 725 | throw new IllegalStateException(del + " " + node); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 726 | } |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 727 | |
| 728 | return neighbours; |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 729 | } |
| 730 | |
| 731 | /** |
| 732 | * Extracts the subgraph G' of this graph G, containing exactly the nodes |
| 733 | * specified by the labels in V', and preserving the original |
| 734 | * <i>transitive</i> graph relation among those nodes. </p> |
| 735 | * |
| 736 | * @param subset a subset of the labels of this graph; the resulting graph |
| 737 | * will have only the nodes with these labels. |
| 738 | */ |
| 739 | public Digraph<T> extractSubgraph(final Set<T> subset) { |
| 740 | Digraph<T> subgraph = this.clone(); |
| 741 | subgraph.subgraph(subset); |
| 742 | return subgraph; |
| 743 | } |
| 744 | |
| 745 | /** |
| 746 | * Removes all nodes from this graph except those whose label is an element of {@code keepLabels}. |
| 747 | * Edges are added so as to preserve the <i>transitive</i> closure relation. |
| 748 | * |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 749 | * @param keepLabels a subset of the labels of this graph; the resulting graph will have only the |
| 750 | * nodes with these labels. |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 751 | */ |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 752 | private void subgraph(final Set<T> keepLabels) { |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 753 | // This algorithm does the following: |
| 754 | // Let keep = nodes that have labels in keepLabels. |
| 755 | // Let toRemove = nodes \ keep. reachables = successors and predecessors of keep in nodes. |
| 756 | // reachables is the subset of nodes of remove that are an immediate neighbor of some node in |
| 757 | // keep. |
| 758 | // |
| 759 | // Removes all nodes of reachables from keepLabels. |
| 760 | // Until reachables is empty: |
| 761 | // Takes n from reachables |
| 762 | // for all s in succ(n) |
| 763 | // for all p in pred(n) |
| 764 | // add the edge (p, s) |
| 765 | // add s to reachables |
| 766 | // for all p in pred(n) |
| 767 | // add p to reachables |
| 768 | // Remove n and its edges |
| 769 | // |
| 770 | // A few adjustments are needed to do the whole computation. |
| 771 | |
| 772 | final Set<Node<T>> toRemove = new HashSet<>(); |
| 773 | final Set<Node<T>> keepNeighbors = new HashSet<>(); |
| 774 | |
| 775 | // Look for all nodes if they are to be kept or removed |
| 776 | for (Node<T> node : nodes.values()) { |
| 777 | if (keepLabels.contains(node.getLabel())) { |
| 778 | // Node is to be kept |
| 779 | keepNeighbors.addAll(node.getPredecessors()); |
| 780 | keepNeighbors.addAll(node.getSuccessors()); |
| 781 | } else { |
| 782 | // node is to be removed. |
| 783 | toRemove.add(node); |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | if (toRemove.isEmpty()) { |
| 788 | // This premature return is needed to avoid 0-size priority queue creation. |
| 789 | return; |
| 790 | } |
| 791 | |
| 792 | // We use a priority queue to look for low-order nodes first so we don't propagate the high |
| 793 | // number of paths of high-order nodes making the time consumption explode. |
| 794 | // For perfect results we should reorder the set each time we add a new edge but this would |
| 795 | // be too expensive, so this is a good enough approximation. |
laurentlb | 3d2a68c | 2017-06-30 00:32:04 +0200 | [diff] [blame] | 796 | final PriorityQueue<Node<T>> reachables = |
| 797 | new PriorityQueue<>( |
| 798 | toRemove.size(), |
| 799 | comparingLong(arg -> (long) arg.numPredecessors() * (long) arg.numSuccessors())); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 800 | |
| 801 | // Construct the reachables queue with the list of successors and predecessors of keep in |
| 802 | // toRemove. |
| 803 | keepNeighbors.retainAll(toRemove); |
| 804 | reachables.addAll(keepNeighbors); |
| 805 | toRemove.removeAll(reachables); |
| 806 | |
| 807 | // Remove nodes, least connected first, preserving reachability. |
| 808 | while (!reachables.isEmpty()) { |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 809 | |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 810 | Node<T> node = reachables.poll(); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 811 | |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 812 | Collection<Node<T>> neighbours = removeNode(node, /*preserveOrder*/ true); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 813 | |
dbabkin | 9f58c50 | 2018-04-10 07:23:11 -0700 | [diff] [blame] | 814 | for (Node<T> neighbour : neighbours) { |
| 815 | if (toRemove.remove(neighbour)) { |
| 816 | reachables.add(neighbour); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 817 | } |
| 818 | } |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 819 | } |
| 820 | |
| 821 | // Final cleanup for non-reachable nodes. |
| 822 | for (Node<T> node : toRemove) { |
| 823 | removeNode(node, false); |
| 824 | } |
| 825 | } |
| 826 | |
Jonathan Bluett-Duncan | 0df3ddbd | 2017-08-09 11:13:54 +0200 | [diff] [blame] | 827 | @FunctionalInterface |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 828 | private interface NodeSetReceiver<T> { |
| 829 | void accept(Set<Node<T>> nodes); |
| 830 | } |
| 831 | |
| 832 | /** |
| 833 | * Find strongly connected components using path-based strong component |
| 834 | * algorithm. This has the advantage over the default method of returning |
| 835 | * the components in postorder. |
| 836 | * |
| 837 | * We visit nodes depth-first, keeping track of the order that |
| 838 | * we visit them in (preorder). Our goal is to find the smallest node (in |
| 839 | * this preorder of visitation) reachable from a given node. We keep track of the |
| 840 | * smallest node pointed to so far at the top of a stack. If we ever find an |
| 841 | * already-visited node, then if it is not already part of a component, we |
| 842 | * pop nodes from that stack until we reach this already-visited node's number |
| 843 | * or an even smaller one. |
| 844 | * |
| 845 | * Once the depth-first visitation of a node is complete, if this node's |
| 846 | * number is at the top of the stack, then it is the "first" element visited |
| 847 | * in its strongly connected component. Hence we pop all elements that were |
| 848 | * pushed onto the visitation stack and put them in a strongly connected |
| 849 | * component with this one, then send a passed-in {@link Digraph.NodeSetReceiver} this component. |
| 850 | */ |
| 851 | private class SccVisitor<T> { |
| 852 | // Nodes already assigned to a strongly connected component. |
Ulf Adams | 07dba94 | 2015-03-05 14:47:37 +0000 | [diff] [blame] | 853 | private final Set<Node<T>> assigned = new HashSet<>(); |
| 854 | |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 855 | // The order each node was visited in. |
Ulf Adams | 07dba94 | 2015-03-05 14:47:37 +0000 | [diff] [blame] | 856 | private final Map<Node<T>, Integer> preorder = new HashMap<>(); |
| 857 | |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 858 | // Stack of all nodes visited whose SCC has not yet been determined. When an SCC is found, |
| 859 | // that SCC is an initial segment of this stack, and is popped off. Every time a new node is |
| 860 | // visited, it is put on this stack. |
Ulf Adams | 07dba94 | 2015-03-05 14:47:37 +0000 | [diff] [blame] | 861 | private final List<Node<T>> stack = new ArrayList<>(); |
| 862 | |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 863 | // Stack of visited indices for the first-visited nodes in each of their known-so-far |
| 864 | // strongly connected components. A node pushes its index on when it is visited. If any of |
| 865 | // its successors have already been visited and are not in an already-found strongly connected |
| 866 | // component, then, since the successor was already visited, it and this node must be part of a |
| 867 | // cycle. So every node visited since the successor is actually in the same strongly connected |
| 868 | // component. In this case, preorderStack is popped until the top is at most the successor's |
| 869 | // index. |
| 870 | // |
| 871 | // After all descendants of a node have been visited, if the top element of preorderStack is |
| 872 | // still the current node's index, then it was the first element visited of the current strongly |
| 873 | // connected component. So all nodes on {@code stack} down to the current node are in its |
| 874 | // strongly connected component. And the node's index is popped from preorderStack. |
Ulf Adams | 07dba94 | 2015-03-05 14:47:37 +0000 | [diff] [blame] | 875 | private final List<Integer> preorderStack = new ArrayList<>(); |
| 876 | |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 877 | // Index of node being visited. |
| 878 | private int counter = 0; |
| 879 | |
| 880 | private void visit(NodeSetReceiver<T> visitor, Node<T> node) { |
| 881 | if (preorder.containsKey(node)) { |
| 882 | // This can only happen if this was a non-recursive call, and a previous |
| 883 | // visit call had already visited node. |
| 884 | return; |
| 885 | } |
| 886 | preorder.put(node, counter); |
| 887 | stack.add(node); |
| 888 | preorderStack.add(counter++); |
| 889 | int preorderLength = preorderStack.size(); |
| 890 | for (Node<T> succ : node.getSuccessors()) { |
| 891 | Integer succPreorder = preorder.get(succ); |
| 892 | if (succPreorder == null) { |
| 893 | visit(visitor, succ); |
| 894 | } else { |
| 895 | // Does succ not already belong to an SCC? If it doesn't, then it |
| 896 | // must be in the same SCC as node. The "starting node" of this SCC |
| 897 | // must have been visited before succ (or is succ itself). |
| 898 | if (!assigned.contains(succ)) { |
| 899 | while (preorderStack.get(preorderStack.size() - 1) > succPreorder) { |
| 900 | preorderStack.remove(preorderStack.size() - 1); |
| 901 | } |
| 902 | } |
| 903 | } |
| 904 | } |
| 905 | if (preorderLength == preorderStack.size()) { |
| 906 | // If the length of the preorderStack is unchanged, we did not find any earlier-visited |
| 907 | // nodes that were part of a cycle with this node. So this node is the first-visited |
| 908 | // element in its strongly connected component, and we collect the component. |
| 909 | preorderStack.remove(preorderStack.size() - 1); |
Ulf Adams | 07dba94 | 2015-03-05 14:47:37 +0000 | [diff] [blame] | 910 | Set<Node<T>> scc = new HashSet<>(); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 911 | Node<T> compNode; |
| 912 | do { |
| 913 | compNode = stack.remove(stack.size() - 1); |
| 914 | assigned.add(compNode); |
| 915 | scc.add(compNode); |
| 916 | } while (!node.equals(compNode)); |
| 917 | visitor.accept(scc); |
| 918 | } |
| 919 | } |
| 920 | } |
| 921 | |
| 922 | /******************************************************************** |
| 923 | * * |
| 924 | * Orders, traversals and visitors * |
| 925 | * * |
| 926 | ********************************************************************/ |
| 927 | |
| 928 | /** |
| 929 | * A visitation over all the nodes in the graph that invokes |
| 930 | * <code>visitor.visitNode()</code> for each node in a depth-first |
| 931 | * post-order: each node is visited <i>after</i> each of its successors; the |
| 932 | * order in which edges are traversed is the order in which they were added |
| 933 | * to the graph. <code>visitor.visitEdge()</code> is not called. |
| 934 | * |
| 935 | * @param startNodes the set of nodes from which to begin the visitation. |
| 936 | */ |
| 937 | public void visitPostorder(GraphVisitor<T> visitor, |
| 938 | Iterable<Node<T>> startNodes) { |
| 939 | visitDepthFirst(visitor, DFS.Order.POSTORDER, false, startNodes); |
| 940 | } |
| 941 | |
| 942 | /** |
| 943 | * Equivalent to {@code visitPostorder(visitor, getNodes())}. |
| 944 | */ |
| 945 | public void visitPostorder(GraphVisitor<T> visitor) { |
| 946 | visitPostorder(visitor, nodes.values()); |
| 947 | } |
| 948 | |
| 949 | /** |
| 950 | * A visitation over all the nodes in the graph that invokes |
| 951 | * <code>visitor.visitNode()</code> for each node in a depth-first |
| 952 | * pre-order: each node is visited <i>before</i> each of its successors; the |
| 953 | * order in which edges are traversed is the order in which they were added |
| 954 | * to the graph. <code>visitor.visitEdge()</code> is not called. |
| 955 | * |
| 956 | * @param startNodes the set of nodes from which to begin the visitation. |
| 957 | */ |
| 958 | public void visitPreorder(GraphVisitor<T> visitor, |
| 959 | Iterable<Node<T>> startNodes) { |
| 960 | visitDepthFirst(visitor, DFS.Order.PREORDER, false, startNodes); |
| 961 | } |
| 962 | |
| 963 | /** |
| 964 | * Equivalent to {@code visitPreorder(visitor, getNodes())}. |
| 965 | */ |
| 966 | public void visitPreorder(GraphVisitor<T> visitor) { |
| 967 | visitPreorder(visitor, nodes.values()); |
| 968 | } |
| 969 | |
| 970 | /** |
| 971 | * A visitation over all the nodes in the graph in depth-first order. See |
| 972 | * DFS constructor for meaning of 'order' and 'transpose' parameters. |
| 973 | * |
| 974 | * @param startNodes the set of nodes from which to begin the visitation. |
| 975 | */ |
| 976 | public void visitDepthFirst(GraphVisitor<T> visitor, |
| 977 | DFS.Order order, |
| 978 | boolean transpose, |
| 979 | Iterable<Node<T>> startNodes) { |
Jonathan Bluett-Duncan | 0df3ddbd | 2017-08-09 11:13:54 +0200 | [diff] [blame] | 980 | DFS<T> visitation = new DFS<>(order, transpose); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 981 | visitor.beginVisit(); |
| 982 | for (Node<T> node: startNodes) { |
| 983 | visitation.visit(node, visitor); |
| 984 | } |
| 985 | visitor.endVisit(); |
| 986 | } |
| 987 | |
Janak Ramakrishnan | 706bc72 | 2015-08-25 22:02:38 +0000 | [diff] [blame] | 988 | private static <T> Comparator<Node<T>> makeNodeComparator( |
| 989 | final Comparator<? super T> comparator) { |
laurentlb | 3d2a68c | 2017-06-30 00:32:04 +0200 | [diff] [blame] | 990 | return comparing(Node::getLabel, comparator::compare); |
Janak Ramakrishnan | 706bc72 | 2015-08-25 22:02:38 +0000 | [diff] [blame] | 991 | } |
| 992 | |
| 993 | /** |
Ulf Adams | 3ab82f7 | 2015-09-04 12:10:53 +0000 | [diff] [blame] | 994 | * Given {@code unordered}, a collection of nodes and a (possibly null) {@code comparator} for |
| 995 | * their labels, returns a sorted collection if {@code comparator} is non-null, otherwise returns |
| 996 | * {@code unordered}. |
Janak Ramakrishnan | 706bc72 | 2015-08-25 22:02:38 +0000 | [diff] [blame] | 997 | */ |
| 998 | private static <T> Collection<Node<T>> maybeOrderCollection( |
| 999 | Collection<Node<T>> unordered, @Nullable final Comparator<? super T> comparator) { |
Jonathan Bluett-Duncan | 0df3ddbd | 2017-08-09 11:13:54 +0200 | [diff] [blame] | 1000 | return comparator == null |
| 1001 | ? unordered |
| 1002 | : ImmutableList.sortedCopyOf(makeNodeComparator(comparator), unordered); |
Janak Ramakrishnan | 706bc72 | 2015-08-25 22:02:38 +0000 | [diff] [blame] | 1003 | } |
| 1004 | |
| 1005 | private void visitNodesBeforeEdges( |
| 1006 | GraphVisitor<T> visitor, |
| 1007 | Iterable<Node<T>> startNodes, |
| 1008 | @Nullable Comparator<? super T> comparator) { |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 1009 | visitor.beginVisit(); |
| 1010 | for (Node<T> fromNode: startNodes) { |
| 1011 | visitor.visitNode(fromNode); |
Janak Ramakrishnan | 706bc72 | 2015-08-25 22:02:38 +0000 | [diff] [blame] | 1012 | for (Node<T> toNode : maybeOrderCollection(fromNode.getSuccessors(), comparator)) { |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 1013 | visitor.visitEdge(fromNode, toNode); |
| 1014 | } |
| 1015 | } |
| 1016 | visitor.endVisit(); |
| 1017 | } |
| 1018 | |
| 1019 | /** |
Janak Ramakrishnan | 706bc72 | 2015-08-25 22:02:38 +0000 | [diff] [blame] | 1020 | * A visitation over the graph that visits all nodes and edges in topological order |
| 1021 | * such that each node is visited before any edge coming out of that node; ties among nodes are |
Ulf Adams | 3ab82f7 | 2015-09-04 12:10:53 +0000 | [diff] [blame] | 1022 | * broken using the provided {@code comparator} if not null; edges are visited in order specified |
Janak Ramakrishnan | 706bc72 | 2015-08-25 22:02:38 +0000 | [diff] [blame] | 1023 | * by the comparator, <b>not</b> topological order of the target nodes. |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 1024 | */ |
Janak Ramakrishnan | 706bc72 | 2015-08-25 22:02:38 +0000 | [diff] [blame] | 1025 | public void visitNodesBeforeEdges( |
| 1026 | GraphVisitor<T> visitor, @Nullable Comparator<? super T> comparator) { |
| 1027 | visitNodesBeforeEdges( |
| 1028 | visitor, |
| 1029 | comparator == null ? getTopologicalOrder() : getTopologicalOrder(comparator), |
| 1030 | comparator); |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 1031 | } |
Han-Wen Nienhuys | d08b27f | 2015-02-25 16:45:20 +0100 | [diff] [blame] | 1032 | } |