Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1 | // Part of the Crubit project, under the Apache License v2.0 with LLVM |
| 2 | // Exceptions. See /LICENSE for license information. |
| 3 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 4 | #![cfg_attr(not(test), no_std)] |
Devin Jeanpierre | c05cac5 | 2022-03-31 03:55:58 -0700 | [diff] [blame] | 5 | #![feature(negative_impls)] |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 6 | //! Traits for memory management operations on wrapped C++ objects, based on |
| 7 | //! moveit. |
| 8 | //! |
| 9 | //! # Comparison with moveit |
| 10 | //! |
| 11 | //! ## Non-destructive move |
| 12 | //! |
| 13 | //! Unlike moveit, C++ moves are never Rust moves. |
| 14 | //! |
| 15 | //! This is important because it dramatically simplifies the mental model and |
| 16 | //! code involved. Everything to do with DerefMove can be removed. Furthermore, |
| 17 | //! it makes it *more useful*. |
| 18 | //! |
| 19 | //! In particular, imagine trying to write a *Rust* implementation of the |
| 20 | //! following C++ function: |
| 21 | //! |
| 22 | //! ```c++ |
| 23 | //! void Swap(CxxClass& x, CxxClass& y) { |
| 24 | //! CxxClass tmp = std::move(x); |
| 25 | //! x = std::move(y); |
| 26 | //! y = std::move(tmp); |
| 27 | //! } |
| 28 | //! ``` |
| 29 | //! |
| 30 | //! With destructive moves we're in a bind: any move from x destroys its source, |
| 31 | //! leaving us with nothing to assign to. C++ moves are non-destructive. Traits |
| 32 | //! modeling C++ moves, therefore, in order to be most compatible, should also |
| 33 | //! be non-destructive. |
| 34 | //! |
| 35 | //! Here is an implementation using the traits in this file, in pure Rust: |
| 36 | //! |
| 37 | //! ``` |
| 38 | //! fn swap(mut x: Pin<&mut CxxClass>, mut y: Pin<&mut CxxClass>) { |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 39 | //! emplace!{ let mut tmp = mov!(x.as_mut()); } |
| 40 | //! x.assign(mov!(y.as_mut())); |
| 41 | //! y.assign(mov!(tmp)); |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 42 | //! } |
| 43 | //! ``` |
| 44 | //! |
| 45 | //! ## Curried `Ctor` traits |
| 46 | //! |
| 47 | //! Rather than `CopyCtor::copy_ctor` and `MoveCtor::move_ctor`, this crate |
| 48 | //! embraces `Ctor` itself as the single unique way to initialize everything. |
| 49 | //! And so copy-constructible types are not things which implement `CopyCtor`, |
| 50 | //! but rather, things which implement `CtorNew<&T>`. Similarly, |
| 51 | //! move-constructible things implement `CtorNew<RvalueReference<'_, T>>`. |
| 52 | //! |
| 53 | //! ## Blanket impls |
| 54 | //! |
| 55 | //! So that Rust types can be used against C++ functions (even templated ones), |
| 56 | //! the copy and move traits have blanket impls for all suitable Unpin types. |
| 57 | //! |
| 58 | //! More significantly, we take the position that all Unpin types are their own |
| 59 | //! `Ctor`. This makes `Ctor`-based initialization nearly a perfect superset of |
| 60 | //! normal initialization rules: for a non-self-referential Rust type (an Unpin |
| 61 | //! type), it looks the same as normal, but for C++-like !Unpin types we use |
| 62 | //! custom `Ctor` values to initialize in-place. |
| 63 | //! |
| 64 | //! Blanket implementing based on `Unpin` means that we're treating `T : Unpin` |
| 65 | //! as effectively meaning "T is safe to deal with by value", which is close to, |
| 66 | //! but not quite, what it means. (There are some types which are !Unpin but |
| 67 | //! would be safe to treat as normal rust types. Unfortunately, there is no way |
| 68 | //! to detect them.) |
| 69 | //! |
| 70 | //! ## Overload trait |
| 71 | //! |
| 72 | //! This module also includes a prototype alternative API which more directly |
| 73 | //! models overloaded constructors: `T : CtorNew<(A, B, C)>` is roughly |
| 74 | //! equivalent to the C++ "T has a constructor taking arguments of type A, B, |
| 75 | //! and C". |
| 76 | //! |
| 77 | //! ## StackBox |
| 78 | //! |
| 79 | //! Moveit needs a StackBox type which is comparable to Box, except stored on |
| 80 | //! the stack -- in particular, which implements OuterDrop and the like. |
| 81 | //! |
| 82 | //! Since DerefMove is not used here, we instead are able to export only a |
| 83 | //! Pin<&mut T> to users. |
| 84 | //! |
| 85 | //! One still needs something similar to `Slot` or `StackBox`: a `MaybeUninit` |
| 86 | //! type which will run drop. This isn't exposed to users directly if they are |
| 87 | //! simply storing in a local variable. |
| 88 | //! |
| 89 | //! ## Structs and the `ctor!` macro |
| 90 | //! |
| 91 | //! `ctor` adds a `ctor!` macro to make it easy to initialize a struct |
| 92 | //! that contains non-trivially-relocatable fields. |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 93 | //! |
| 94 | //! ## Features |
| 95 | //! |
| 96 | //! This library requires the following unstable features enabled in users: |
| 97 | //! |
| 98 | //! **negative_impls:** |
| 99 | //! This is used to allow trait coherence checking for `!Unpin` types. A |
| 100 | //! "blanket impl for all `Unpin` types is used to make them constructible with |
| 101 | //! `ctor`, and Rust believes this may conflict with types that use |
| 102 | //! `PhantomPinned`. It knows no conflict exists if, instead, types impl |
| 103 | //! `!Unpin`. |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 104 | |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 105 | extern crate alloc; |
| 106 | |
| 107 | use alloc::boxed::Box; |
Googler | 7059c3a | 2023-04-04 04:04:37 -0700 | [diff] [blame] | 108 | use core::marker::{PhantomData, Unpin}; |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 109 | use core::mem::{ManuallyDrop, MaybeUninit}; |
Googler | 7059c3a | 2023-04-04 04:04:37 -0700 | [diff] [blame] | 110 | use core::ops::{Deref, DerefMut}; |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 111 | use core::pin::Pin; |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 112 | |
| 113 | pub use ctor_proc_macros::*; |
| 114 | |
| 115 | /// The string constant for #[must_use] to describe why you must use a `Ctor`. |
| 116 | macro_rules! must_use_ctor { |
| 117 | () => { |
| 118 | "A Ctor is not invoked unless emplaced, using e.g. `emplace!{}`, or `Box::emplace()`." |
| 119 | }; |
| 120 | } |
| 121 | |
| 122 | /// The string constant for #[must_use] to describe why you must use a |
| 123 | /// `Ctor`/`Assign` source. |
| 124 | macro_rules! must_use_ctor_assign { |
| 125 | ($name:literal) => { |
| 126 | concat!( |
| 127 | $name, |
| 128 | " is not invoked unless emplaced, using e.g. `emplace!{}`, or `Box::emplace()`, or", |
| 129 | " unless assigned from, using `.assign()`." |
| 130 | ) |
| 131 | }; |
| 132 | } |
| 133 | |
| 134 | // ====================== |
| 135 | // ~Unchanged from moveit |
| 136 | // ====================== |
| 137 | |
| 138 | #[must_use = must_use_ctor!()] |
| 139 | pub trait Ctor { |
| 140 | type Output; |
| 141 | unsafe fn ctor(self, dest: Pin<&mut MaybeUninit<Self::Output>>); |
| 142 | |
| 143 | /// Returns a chained Ctor, which will invoke `f` after construction. |
| 144 | /// |
| 145 | /// for example, these two snippets are equivalent: |
| 146 | /// |
| 147 | /// ``` |
| 148 | /// emplace! { let x = y; } |
| 149 | /// x.mutating_method(); |
| 150 | /// ``` |
| 151 | /// |
| 152 | /// ``` |
| 153 | /// emplace! { let x = y.ctor_then(|mut inited| inited.mutating_method()); } |
| 154 | /// ``` |
| 155 | fn ctor_then<F: FnOnce(Pin<&mut Self::Output>)>(self, f: F) -> CtorThen<Self, F> |
| 156 | where |
| 157 | Self: Sized, |
| 158 | { |
| 159 | CtorThen { ctor: self, f } |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | pub trait Emplace<T>: Sized { |
| 164 | fn emplace<C: Ctor<Output = T>>(c: C) -> Pin<Self>; |
| 165 | } |
| 166 | |
| 167 | impl<T> Emplace<T> for Box<T> { |
| 168 | fn emplace<C: Ctor<Output = T>>(ctor: C) -> Pin<Box<T>> { |
| 169 | let mut uninit = Box::new(MaybeUninit::<T>::uninit()); |
| 170 | unsafe { |
| 171 | let pinned = Pin::new_unchecked(&mut *uninit); |
| 172 | ctor.ctor(pinned); |
| 173 | Pin::new_unchecked(Box::from_raw(Box::into_raw(uninit).cast::<T>())) |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | #[must_use = must_use_ctor!()] |
| 179 | pub struct FnCtor<Output, F: FnOnce(Pin<&mut MaybeUninit<Output>>)>(pub F, PhantomData<fn(Output)>); |
| 180 | impl<Output, F: FnOnce(Pin<&mut MaybeUninit<Output>>)> FnCtor<Output, F> { |
| 181 | pub fn new(f: F) -> Self { |
| 182 | Self(f, PhantomData) |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | impl<Output, F: FnOnce(Pin<&mut MaybeUninit<Output>>)> Ctor for FnCtor<Output, F> { |
| 187 | type Output = Output; |
| 188 | |
| 189 | unsafe fn ctor(self, dest: Pin<&mut MaybeUninit<Output>>) { |
| 190 | self.0(dest); |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | /// !Unpin to override the blanket Ctor impl. |
| 195 | impl<Output, F> !Unpin for FnCtor<Output, F> {} |
| 196 | |
| 197 | /// Copy type. |
| 198 | /// |
| 199 | /// This creates a new `P::Target` by copying -- either copy-construction |
| 200 | /// (construction from `&*P`), or copy-assignment (assignment from &*P`). It can |
| 201 | /// also be used directly as a `Ctor`. |
| 202 | /// |
| 203 | /// Note: this does not actually copy `P` until it is used. |
| 204 | #[must_use = must_use_ctor_assign!("Copy")] |
| 205 | pub struct Copy<P: Deref>(P); |
| 206 | |
| 207 | impl<Output: for<'a> CtorNew<&'a Output>, P: Deref<Target = Output>> Ctor for Copy<P> { |
| 208 | type Output = Output; |
| 209 | |
| 210 | unsafe fn ctor(self, dest: Pin<&mut MaybeUninit<Output>>) { |
| 211 | Output::ctor_new(&*self.0).ctor(dest); |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | /// !Unpin to override the blanket Ctor impl. |
| 216 | impl<P> !Unpin for Copy<P> {} |
| 217 | |
| 218 | /// Returns a `Copy` which can be used as a `CtorNew` or `Assign` source, or as |
| 219 | /// a `Ctor` directly. |
| 220 | /// |
| 221 | /// Note: this does not actually copy the parameter until it is used. |
| 222 | pub fn copy<T: for<'a> CtorNew<&'a T>, P: Deref<Target = T>>(src: P) -> Copy<P> { |
| 223 | Copy(src) |
| 224 | } |
| 225 | |
| 226 | // ================================ |
| 227 | // DerefMut based move construction |
| 228 | // ================================ |
| 229 | |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 230 | /// Rvalue Reference (move-reference) type. |
| 231 | /// |
| 232 | /// This creates a new `T` by moving -- either move-construction (construction |
| 233 | /// from `RvalueReference(&*P)`), or move-assignment (assignment from |
| 234 | /// `RvalueReference(&*P)`). |
| 235 | /// |
| 236 | /// Note: this does not actually move until it is used. |
| 237 | #[must_use = must_use_ctor_assign!("RvalueReference")] |
Devin Jeanpierre | deea789 | 2022-03-29 02:13:31 -0700 | [diff] [blame] | 238 | #[repr(transparent)] |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 239 | pub struct RvalueReference<'a, T>(pub Pin<&'a mut T>); |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 240 | |
| 241 | impl<T> RvalueReference<'_, T> { |
| 242 | pub fn as_const(&self) -> ConstRvalueReference<'_, T> { |
| 243 | ConstRvalueReference(&*self.0) |
| 244 | } |
| 245 | |
| 246 | pub fn as_mut(&mut self) -> Pin<&mut T> { |
| 247 | self.0.as_mut() |
| 248 | } |
| 249 | |
| 250 | pub fn get_ref(&self) -> &T { |
| 251 | // It would be nice to return &'a T, but that would not be sound, and as a |
| 252 | // result Pin makes it impossible (in safe code). Consider: |
| 253 | // |
| 254 | // let my_pin: Pin<&mut T> = ...; |
| 255 | // let my_borrow = RvalueReference(my_pin.as_mut()).get_ref(); |
| 256 | // |
| 257 | // The lifetime of my_borrow CANNOT be 'a, but instead MUST be scoped to the |
| 258 | // reborrowed lifetime of the pin, or else it would violate the aliasing |
| 259 | // rules by coexisting with my_pin. Thus, get_ref must return &T, not |
| 260 | // &'a T. (For the same reason, as_const returns a ConstRvalueReference |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 261 | // whose lifetime is bound by self, not 'a.) |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 262 | &*self.0 |
| 263 | } |
| 264 | } |
| 265 | |
Googler | 0c5c99a | 2023-03-23 13:55:31 -0700 | [diff] [blame] | 266 | impl<T> Deref for RvalueReference<'_, T> { |
| 267 | type Target = T; |
| 268 | fn deref(&self) -> &Self::Target { |
| 269 | self.get_ref() |
| 270 | } |
| 271 | } |
| 272 | |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 273 | impl<'a, T> Ctor for RvalueReference<'a, T> |
| 274 | where |
| 275 | T: CtorNew<Self>, |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 276 | { |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 277 | type Output = T; |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 278 | |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 279 | unsafe fn ctor(self, dest: Pin<&mut MaybeUninit<T>>) { |
| 280 | T::ctor_new(self).ctor(dest); |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 281 | } |
| 282 | } |
| 283 | |
Googler | 7059c3a | 2023-04-04 04:04:37 -0700 | [diff] [blame] | 284 | /// Converts to an RvalueReference. |
| 285 | /// |
| 286 | /// Do not use this trait directly, instead, cast to an RvalueReference using |
| 287 | /// the `mov!()` macro. |
| 288 | pub trait DerefRvalueReference: Deref |
| 289 | where |
| 290 | Self::Target: Sized, |
| 291 | { |
| 292 | fn deref_rvalue_reference(&mut self) -> RvalueReference<'_, Self::Target>; |
| 293 | } |
| 294 | |
| 295 | impl<T> DerefRvalueReference for Pin<T> |
| 296 | where |
| 297 | T: DerefMut, |
| 298 | Self::Target: Sized, |
| 299 | { |
| 300 | fn deref_rvalue_reference(&mut self) -> RvalueReference<'_, Self::Target> { |
| 301 | RvalueReference(self.as_mut()) |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | impl<T> DerefRvalueReference for &mut T |
| 306 | where |
| 307 | T: Unpin, |
| 308 | Self::Target: Sized, |
| 309 | { |
| 310 | fn deref_rvalue_reference(&mut self) -> RvalueReference<'_, Self::Target> { |
| 311 | RvalueReference(Pin::new(self)) |
| 312 | } |
| 313 | } |
| 314 | |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 315 | /// !Unpin to override the blanket `Ctor` impl. |
| 316 | impl<'a, T> !Unpin for RvalueReference<'a, T> {} |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 317 | |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 318 | /// Const rvalue reference (move-reference) type. Usually not very helpful. |
| 319 | /// |
| 320 | /// This implicitly converts to `T` by const-moving -- either |
| 321 | /// const-move-construction (construction from `ConstRvalueReference(&x)`), or |
| 322 | /// const-move-assignment (assignment from `ConstRvalueReference(&x)`). |
| 323 | #[must_use = must_use_ctor_assign!("ConstRvalueReference")] |
Devin Jeanpierre | deea789 | 2022-03-29 02:13:31 -0700 | [diff] [blame] | 324 | #[repr(transparent)] |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 325 | pub struct ConstRvalueReference<'a, T>(pub &'a T); |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 326 | |
| 327 | impl<'a, T> ConstRvalueReference<'a, T> { |
| 328 | pub fn get_ref(&mut self) -> &'a T { |
| 329 | self.0 |
| 330 | } |
| 331 | } |
| 332 | |
Googler | 0c5c99a | 2023-03-23 13:55:31 -0700 | [diff] [blame] | 333 | impl<T> Deref for ConstRvalueReference<'_, T> { |
| 334 | type Target = T; |
| 335 | fn deref(&self) -> &Self::Target { |
| 336 | self.0 |
| 337 | } |
| 338 | } |
| 339 | |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 340 | impl<'a, T> Ctor for ConstRvalueReference<'a, T> |
| 341 | where |
| 342 | T: CtorNew<Self>, |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 343 | { |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 344 | type Output = T; |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 345 | |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 346 | unsafe fn ctor(self, dest: Pin<&mut MaybeUninit<T>>) { |
| 347 | T::ctor_new(self).ctor(dest); |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 348 | } |
| 349 | } |
| 350 | |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 351 | /// !Unpin to override the blanket `Ctor` impl. |
| 352 | impl<'a, T> !Unpin for ConstRvalueReference<'a, T> {} |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 353 | |
| 354 | /// Creates a "to-be-moved" pointer for `src`. |
| 355 | /// |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 356 | /// In other words, this is analogous to C++ `std::move`, except that this can |
| 357 | /// directly create an `RvalueReference<T>` out of e.g. a `Pin<Box<T>>`. The |
| 358 | /// resulting `RvalueReference` has the lifetime of a temporary, after which the |
| 359 | /// parameter is destroyed. |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 360 | /// |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 361 | /// The resulting `RvalueReference` can be used as a `CtorNew` or `Assign` |
| 362 | /// source, or as a `Ctor` directly. |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 363 | /// |
| 364 | /// Note: this does not actually move the parameter until it is used. |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 365 | #[macro_export] |
| 366 | macro_rules! mov { |
| 367 | ($p:expr) => { |
Googler | 7059c3a | 2023-04-04 04:04:37 -0700 | [diff] [blame] | 368 | $crate::DerefRvalueReference::deref_rvalue_reference(&mut { $p }) |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 369 | }; |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 370 | } |
| 371 | |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 372 | #[macro_export] |
| 373 | macro_rules! const_mov { |
| 374 | ($p:expr) => { |
| 375 | $crate::ConstRvalueReference(&*{ $p }) |
| 376 | }; |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 377 | } |
| 378 | |
| 379 | // ============= |
| 380 | // Blanket impls |
| 381 | // ============= |
| 382 | // |
| 383 | // For interop with C++ templates that may need to take Rust types, we will want |
| 384 | // blanket impls for Rust types where it is safe to do so. |
| 385 | |
| 386 | /// All Rust types are their own constructor, if it is known to be safe (i.e. |
| 387 | /// Unpin). |
| 388 | /// |
| 389 | /// (Note that this is an approximation: some types are safe to deal with by |
| 390 | /// value, as long as they have never been pinned. In `ctor`, we assume |
| 391 | /// that *anything* which is `!Unpin` is only safe to initialize via a manually |
| 392 | /// provided `Ctor`.) |
| 393 | /// |
| 394 | /// (Note: to avoid overlapping impls, every type that implements `Ctor` by hand |
| 395 | /// must be `!Unpin`.) |
| 396 | /// |
| 397 | /// This allows code to safely accept direct initialization of `Unpin` Rust |
| 398 | /// values, while also accepting `Ctor`-based initialization for `!Unpin` |
| 399 | /// values: use `Ctor`-based initialization for both, and as a special case, |
| 400 | /// `Ctor`-based initialization looks identical to direct initialization when |
| 401 | /// the value is `Unpin`. For example, the `ctor!` macro looks like direct |
| 402 | /// initialization for everything `Unpin`. |
| 403 | /// |
| 404 | /// A contrasting design might be to have a separate initialization syntax for |
| 405 | /// direct vs `Ctor`-based initialization. However, that would still likely need |
| 406 | /// to be restricted to `Unpin` types for safety. |
| 407 | impl<T: Unpin> Ctor for T { |
| 408 | type Output = T; |
| 409 | unsafe fn ctor(self, mut dest: Pin<&mut MaybeUninit<Self>>) { |
| 410 | dest.as_mut_ptr().write(self); |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | /// Constructs via a Rust move. |
| 415 | #[must_use = must_use_ctor!()] |
| 416 | pub struct RustMoveCtor<T>(T); |
| 417 | impl<T> !Unpin for RustMoveCtor<T> {} |
| 418 | impl<T> Ctor for RustMoveCtor<T> { |
| 419 | type Output = T; |
| 420 | unsafe fn ctor(self, dest: Pin<&mut MaybeUninit<T>>) { |
| 421 | Pin::into_inner_unchecked(dest).as_mut_ptr().write(self.0); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | /// All Rust types are C++-default-constructible if safe (i.e. Unpin + Default). |
| 426 | impl<T: Unpin + Default + Sized> CtorNew<()> for T { |
| 427 | type CtorType = RustMoveCtor<Self>; |
| 428 | fn ctor_new(_: ()) -> Self::CtorType { |
| 429 | RustMoveCtor(Default::default()) |
| 430 | } |
| 431 | } |
| 432 | |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 433 | /// All Unpin Rust types are C++-copyable if they are Rust-cloneable. |
| 434 | /// |
| 435 | /// (Unpin is required for safety; otherwise, this would violate the Pin |
| 436 | /// guarantee.) |
| 437 | impl<T: Unpin + Clone> CtorNew<&T> for T { |
| 438 | type CtorType = RustMoveCtor<Self>; |
| 439 | fn ctor_new(src: &Self) -> Self::CtorType { |
| 440 | RustMoveCtor(src.clone()) |
| 441 | } |
| 442 | } |
| 443 | |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 444 | // =========== |
| 445 | // ctor_then() |
| 446 | // =========== |
| 447 | |
| 448 | /// A `Ctor` which constructs using `self.ctor`, and then invokes `f` on the |
| 449 | /// resulting object. |
| 450 | /// |
| 451 | /// This struct is created by the `ctor_then` method on `Ctor`. See its |
| 452 | /// documentation for more. |
| 453 | #[must_use = must_use_ctor!()] |
| 454 | pub struct CtorThen<C: Ctor, F: FnOnce(Pin<&mut C::Output>)> { |
| 455 | ctor: C, |
| 456 | f: F, |
| 457 | } |
| 458 | |
| 459 | impl<C: Ctor, F: FnOnce(Pin<&mut C::Output>)> Ctor for CtorThen<C, F> { |
| 460 | type Output = C::Output; |
| 461 | unsafe fn ctor(self, mut dest: Pin<&mut MaybeUninit<Self::Output>>) { |
| 462 | self.ctor.ctor(dest.as_mut()); |
| 463 | let dest = Pin::new_unchecked(Pin::into_inner_unchecked(dest).assume_init_mut()); |
| 464 | (self.f)(dest) |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | impl<C: Ctor, F: FnOnce(Pin<&mut C::Output>)> !Unpin for CtorThen<C, F> {} |
| 469 | |
| 470 | // ======== |
| 471 | // emplace! |
| 472 | // ======== |
| 473 | // |
| 474 | // The emplace!{} macro is now a little simpler, as it doesn't require StackBox |
| 475 | // in the public interface: it can use &mut. |
| 476 | |
| 477 | /// Emplace a constructor into a local or temporary. |
| 478 | /// Syntax: `emplace! { let mut varname = expr() }`, where `expr()` evaluates to |
| 479 | /// a `Ctor<Output=T>`. `varname` will be a `Pin<&mut T>`. |
| 480 | /// |
| 481 | /// If the emplaced value will just be used for the duration of one statement, |
| 482 | /// the `emplace!(ctor)` syntax can be used instead, to emplace the ctor into a |
| 483 | /// temporary. e.g. `foo(emplace!(ctor))` to pass a pinned reference to the |
| 484 | /// emplaced value to a function. |
| 485 | #[macro_export] |
| 486 | macro_rules! emplace { |
| 487 | ($expr:expr) => { |
| 488 | $crate::Slot::unsafe_new().unsafe_construct($expr).unsafe_as_pin_unchecked() |
| 489 | }; |
| 490 | (@emplace_one let [$($mut_:tt)?] $var:ident [$($type_:tt)*]= $expr:expr;) => { |
| 491 | let mut $var = $crate::Slot::unsafe_new(); |
| 492 | $var.unsafe_construct($expr); |
| 493 | let $($mut_)* $var $($type_)* = $var.unsafe_as_pin_unchecked(); |
| 494 | }; |
| 495 | // Base case for repeated lets: empty emplace. |
| 496 | () => {}; |
| 497 | // Recursive case: let [mut] x [: T] = ...; |
| 498 | // There are four different combinations of mutability and explicit type parameter, we have to |
| 499 | // match all of them. |
| 500 | (let mut $var:ident : $t:ty = $expr:expr; $($remaining_lets:tt)*) => { |
| 501 | $crate::emplace! {@emplace_one let [mut] $var [:$t] = $expr;} |
| 502 | $crate::emplace! {$($remaining_lets)*}; |
| 503 | }; |
| 504 | (let mut $var:ident = $expr:expr; $($remaining_lets:tt)*) => { |
| 505 | $crate::emplace! {@emplace_one let [mut] $var []= $expr;} |
| 506 | $crate::emplace! {$($remaining_lets)*}; |
| 507 | }; |
| 508 | (let $var:ident : $t:ty = $expr:expr; $($remaining_lets:tt)*) => { |
| 509 | $crate::emplace! {@emplace_one let [] $var [:$t] = $expr;} |
| 510 | $crate::emplace! {$($remaining_lets)*}; |
| 511 | }; |
| 512 | (let $var:ident = $expr:expr; $($remaining_lets:tt)*) => { |
| 513 | $crate::emplace! {@emplace_one let [] $var [] = $expr;} |
| 514 | $crate::emplace! {$($remaining_lets)*}; |
| 515 | }; |
| 516 | } |
| 517 | |
| 518 | // ==== |
| 519 | // Slot |
| 520 | // ==== |
| 521 | // |
| 522 | // Alternate design: we could expose without the is_initialized flag, which |
| 523 | // would require that all users initialize the type before drop. We may still |
| 524 | // need such a type for interop, since that can be repr(transparent). But it is |
| 525 | // *exceptionally* dangerous, as it requires that all code paths will initialize |
| 526 | // before drop. For example, it means that Ctor is not allowed to panic. |
| 527 | // |
| 528 | // Hypothesis: at least for local variables and reasoning, rustc will be able to |
| 529 | // elide the bool and be equally performant, while also being substantially |
| 530 | // safer. |
| 531 | |
| 532 | /// A pinned optional type, which can store in-place constructed objects. |
| 533 | /// |
| 534 | /// To create a slot safely, it must be constructed in place, using (for |
| 535 | /// example) the `emplace!` macro. It then can operate as a structurally pinned |
| 536 | /// variant of `Option`, allowing for pinned access to the interior. |
| 537 | /// |
| 538 | /// Examples: |
| 539 | /// |
| 540 | /// ``` |
| 541 | /// // Slots can be used to implement a "slotted return value". |
| 542 | /// fn slotted_return(slot: Pin<&mut Slot<u32>>) -> Pin<&mut u32> { |
| 543 | /// slot.replace(42) |
| 544 | /// } |
| 545 | /// |
| 546 | /// emplace! {let slot = Slot::uninit(); } |
| 547 | /// let rv = slotted_return(slot); |
| 548 | /// assert_eq!(*rv, 42); |
| 549 | /// ``` |
| 550 | /// |
| 551 | /// ``` |
| 552 | /// // Slots can also be used for plain output parameters. |
| 553 | /// fn slotted_out_param(slot: Pin<&mut Slot<u32>>) { |
| 554 | /// slot.replace(42); |
| 555 | /// } |
| 556 | /// |
| 557 | /// emplace! {let mut slot = Slot::uninit(); } |
| 558 | /// slotted_out_param(slot.as_mut()); |
| 559 | /// assert_eq!(*slot.as_opt().unwrap(), 42); |
| 560 | /// ``` |
| 561 | pub struct Slot<T> { |
| 562 | is_initialized: bool, |
| 563 | maybe_uninit: MaybeUninit<T>, |
| 564 | } |
| 565 | |
| 566 | impl<T> Drop for Slot<T> { |
| 567 | fn drop(&mut self) { |
| 568 | unsafe { Pin::new_unchecked(self) }.clear() |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | impl<T> !Unpin for Slot<T> {} |
| 573 | |
| 574 | impl<T> Slot<T> { |
| 575 | pub fn uninit() -> impl Ctor<Output = Self> { |
| 576 | RustMoveCtor(Self::unsafe_new()) |
| 577 | } |
| 578 | |
| 579 | pub fn new(value: impl Ctor<Output = T>) -> impl Ctor<Output = Self> { |
| 580 | RustMoveCtor(Self::unsafe_new()).ctor_then(|slot| { |
| 581 | slot.replace(value); |
| 582 | }) |
| 583 | } |
| 584 | |
| 585 | pub fn clear(self: Pin<&mut Self>) { |
| 586 | if self.is_initialized { |
| 587 | let Self { is_initialized, maybe_uninit } = unsafe { Pin::into_inner_unchecked(self) }; |
| 588 | unsafe { |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 589 | core::ptr::drop_in_place(maybe_uninit.as_mut_ptr()); |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 590 | } |
| 591 | *is_initialized = false; |
| 592 | } |
| 593 | } |
| 594 | |
| 595 | pub fn replace(mut self: Pin<&mut Self>, value: impl Ctor<Output = T>) -> Pin<&mut T> { |
| 596 | self.as_mut().clear(); |
| 597 | { |
| 598 | let Self { is_initialized, maybe_uninit } = |
| 599 | unsafe { Pin::into_inner_unchecked(self.as_mut()) }; |
| 600 | unsafe { |
| 601 | value.ctor(Pin::new_unchecked(maybe_uninit)); |
| 602 | } |
| 603 | *is_initialized = true; |
| 604 | } |
| 605 | self.as_opt_mut().unwrap() |
| 606 | } |
| 607 | |
| 608 | pub fn as_opt_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> { |
| 609 | if self.is_initialized { |
| 610 | Some(unsafe { Pin::into_inner_unchecked(self) }.unsafe_as_pin_unchecked()) |
| 611 | } else { |
| 612 | None |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | pub fn as_opt(&self) -> Option<&T> { |
| 617 | if self.is_initialized { |
| 618 | Some(unsafe { self.maybe_uninit.assume_init_ref() }) |
| 619 | } else { |
| 620 | None |
| 621 | } |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | // Hidden: these are only for use by safety macros. |
| 626 | #[doc(hidden)] |
| 627 | impl<T> Slot<T> { |
| 628 | pub fn unsafe_new() -> Self { |
| 629 | Slot { is_initialized: false, maybe_uninit: MaybeUninit::uninit() } |
| 630 | } |
| 631 | |
| 632 | // The following two functions are not marked `unsafe` so that they can be |
| 633 | // called from a single expression in a macro, without an `unsafe{}` block |
| 634 | // which would also cover macro parameters. |
| 635 | // |
| 636 | // One alternative would be an immediately-invoked lambda, but this forces type |
| 637 | // inference, which leads to confusing error messages when it isn't |
| 638 | // inferrable. And, since this is a lambda, the type is not known concretely |
| 639 | // to begin with! |
| 640 | // |
| 641 | // We could instead use a generic function with `impl Ctor` and the like, but |
| 642 | // this function would be unsafe... leading back to the very original |
| 643 | // problem! |
| 644 | // |
| 645 | // So here we bite the bullet: these functions should ideally be marked |
| 646 | // "unsafe", but, seeing as they are only invoked from a macro, and that |
| 647 | // macro needs to invoke expressions in calls to these functions, they are |
| 648 | // only *named* "unsafe_foo" instead. |
| 649 | |
| 650 | /// Safety: must not have already been constructed, as that would violate |
| 651 | /// the pin guarantee. |
| 652 | pub fn unsafe_construct(&mut self, ctor: impl Ctor<Output = T>) -> &mut Self { |
| 653 | unsafe { ctor.ctor(Pin::new_unchecked(&mut self.maybe_uninit)) }; |
| 654 | self.is_initialized = true; |
| 655 | self |
| 656 | } |
| 657 | |
| 658 | /// Safety: pin guarantee, assumes init. |
| 659 | pub fn unsafe_as_pin_unchecked(&mut self) -> Pin<&mut T> { |
| 660 | unsafe { Pin::new_unchecked(self.maybe_uninit.assume_init_mut()) } |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | #[doc(hidden)] |
| 665 | pub mod macro_internal { |
| 666 | use super::*; |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 667 | pub use core::mem::MaybeUninit; |
| 668 | pub use core::pin::Pin; |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 669 | |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 670 | /// Workaround for more_qualified_paths. |
| 671 | /// Instead of `<Foo as Bar>::Assoc { ... }`, which requires that feature, |
| 672 | /// we can use `Identity<<Foo as Bar>::Assoc> { ... }`. |
| 673 | /// |
| 674 | /// See https://github.com/rust-lang/rust/issues/86935#issuecomment-1146670057 |
| 675 | /// |
| 676 | /// TODO(jeanpierreda): Delete this when the feature is stabilized. |
| 677 | pub type Identity<T> = T; |
| 678 | |
Devin Jeanpierre | be1efd2 | 2022-05-10 16:52:07 -0700 | [diff] [blame] | 679 | /// Trait which causes compilation error if a `#[recursively_pinned]` struct |
| 680 | /// impls `Drop`. |
| 681 | /// |
| 682 | /// Idea from https://docs.rs/pin-project/latest/pin_project/attr.pin_project.html#safety |
| 683 | pub trait DoNotImplDrop {} |
| 684 | #[allow(drop_bounds)] |
| 685 | impl<T: Drop> DoNotImplDrop for T {} |
| 686 | |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 687 | /// Drops a pointer when dropped. |
| 688 | /// |
| 689 | /// Safety: this will drop the pointer, so this is only safe if no other |
| 690 | /// code will access the pointer afterwards. This includes drop: the |
| 691 | /// pointer must itself be in a ManuallyDrop. |
| 692 | pub struct UnsafeDropGuard<T>(*mut T); |
| 693 | impl<T> Drop for UnsafeDropGuard<T> { |
| 694 | fn drop(&mut self) { |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 695 | unsafe { core::ptr::drop_in_place(self.0) }; |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 696 | } |
| 697 | } |
| 698 | |
| 699 | /// Initializes a field, and returns a drop guard which will drop that |
| 700 | /// field. |
| 701 | /// |
| 702 | /// Intended use: when initializing a struct field-by-field, each |
| 703 | /// initialized field should be guarded in case of panic. Once the |
| 704 | /// struct is completely initialized, the drop guards can be forgotten |
| 705 | /// with `std::mem::forget()`. See the `ctor!` macro, where this is used. |
| 706 | /// |
| 707 | /// Safety: the field must satisfy the Pin guarantee. |
| 708 | pub unsafe fn init_field<T>(field: *mut T, ctor: impl Ctor<Output = T>) -> impl Drop { |
| 709 | // safety: MaybeUninit<T> is the same layout as T, the caller guarantees it's |
| 710 | // pinned. |
| 711 | let maybe_uninit = field as *mut MaybeUninit<T>; |
| 712 | let pinned = Pin::new_unchecked(&mut *maybe_uninit); |
| 713 | Ctor::ctor(ctor, pinned); |
| 714 | UnsafeDropGuard(field) |
| 715 | } |
| 716 | |
| 717 | pub fn require_recursively_pinned<_T: RecursivelyPinned>() {} |
| 718 | } |
| 719 | |
Devin Jeanpierre | be1efd2 | 2022-05-10 16:52:07 -0700 | [diff] [blame] | 720 | // ===================== |
| 721 | // #[recursively_pinned] |
| 722 | // ===================== |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 723 | |
Devin Jeanpierre | be1efd2 | 2022-05-10 16:52:07 -0700 | [diff] [blame] | 724 | /// The `RecursivelyPinned` trait asserts that when the struct is pinned, every |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 725 | /// field is also pinned. |
| 726 | /// |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 727 | /// This trait is automatically implemented for any `#[recursively_pinned]` |
| 728 | /// struct. |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 729 | /// |
| 730 | /// ## Safety |
| 731 | /// |
| 732 | /// Only use if you never directly access fields of a pinned object. For |
| 733 | /// example, with the pin-project crate, all fields should be marked `#[pin]`. |
| 734 | pub unsafe trait RecursivelyPinned { |
| 735 | /// An associated type with the same fields, minus any which are not |
| 736 | /// initialized by the `ctor!()` macro. |
| 737 | /// |
| 738 | /// For example, the following struct `CtorOnly` can be constructed by value |
| 739 | /// using `ctor!()`, but not using normal Rust initialization. |
| 740 | /// Effectively, the struct is forced into only ever existing in a |
| 741 | /// pinned state. |
| 742 | /// |
| 743 | /// ``` |
| 744 | /// // (Alternatively, `#[non_exhaustive]` may be used instead of the private field.) |
| 745 | /// pub struct CtorOnly { |
| 746 | /// pub field: i32, |
| 747 | /// _must_construct_using_ctor: [(); 0], |
| 748 | /// } |
| 749 | /// |
| 750 | /// // The same struct, but without the private field. |
| 751 | /// // (Alternatively, without `#[non_exhaustive]`.) |
| 752 | /// pub struct CtorOnlyFields { |
| 753 | /// pub field: i32, |
| 754 | /// } |
| 755 | /// |
| 756 | /// unsafe impl RecursivelyPinned for CtorOnly { |
| 757 | /// type CtorInitializedFields = CtorOnlyFields; |
| 758 | /// } |
| 759 | /// ``` |
| 760 | /// |
| 761 | /// By using `CtorInitializedFields` paired with a private field (or |
| 762 | /// `#[non_exhaustive]`), the following code is now invalid: |
| 763 | /// |
| 764 | /// ```ignore |
| 765 | /// # // TODO(jeanpierreda): make this tested, somehow. |
| 766 | /// // Fails to compile: did not specify _must_construct_using_ctor, and cannot, |
| 767 | /// // because it is private |
| 768 | /// let x = CtorOnly {field: 3}; |
| 769 | /// ``` |
| 770 | /// |
| 771 | /// While construction using `ctor!()` works fine: |
| 772 | /// |
| 773 | /// ```ignore |
| 774 | /// emplace!{let x = ctor!(CtorOnly {field: 3})} |
| 775 | /// ``` |
| 776 | /// |
| 777 | /// The size and layout of `CtorInitializedFields` is ignored; it only |
| 778 | /// affects which field names are required for complete `ctor!()` |
| 779 | /// initialization. Any fields left out of the `CtorInitializedFields` type |
| 780 | /// will not be initialized, so they should generally be zero-sized. |
| 781 | type CtorInitializedFields; |
| 782 | } |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 783 | |
Devin Jeanpierre | be1efd2 | 2022-05-10 16:52:07 -0700 | [diff] [blame] | 784 | /// The drop trait for `#[recursively_pinned(PinnedDrop)]` types. |
| 785 | /// |
| 786 | /// It is never valid to implement `Drop` for a recursively-pinned type, as this |
| 787 | /// would be unsound: the `&mut self` in `drop` would allow the pin guarantee to |
| 788 | /// be violated. |
| 789 | /// |
| 790 | /// Instead, if such a struct is to implement drop, it must pass `PinnedDrop` to |
| 791 | /// `recursively_pinned`, and implement the `PinnedDrop` trait. |
| 792 | /// |
| 793 | /// See also the [analogous `pin_project` feature](https://docs.rs/pin-project/latest/pin_project/attr.pinned_drop.html) |
| 794 | pub trait PinnedDrop { |
| 795 | /// Run the drop logic for self. |
| 796 | /// |
| 797 | /// ## Safety |
| 798 | /// |
| 799 | /// If called from anywhere other than the automatically-generated |
| 800 | /// `Drop::drop`, the behavior is undefined. |
| 801 | /// |
| 802 | /// To manually drop the value, use `ManuallyDrop` or use |
| 803 | /// `std::ptr::drop_in_place` (etc.) instead. |
| 804 | unsafe fn pinned_drop(self: Pin<&mut Self>); |
| 805 | } |
| 806 | |
| 807 | // ===== |
| 808 | // ctor! |
| 809 | // ===== |
| 810 | |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 811 | /// The `ctor!` macro evaluates to a `Ctor` for a Rust struct, with |
| 812 | /// user-specified fields. |
| 813 | /// |
| 814 | /// (This was inspired by, but takes no code from, https://crates.io/crates/project-uninit.) |
| 815 | /// |
| 816 | /// Example use: |
| 817 | /// |
| 818 | /// ``` |
| 819 | /// fn new() -> impl Ctor<Output=MyStruct> { |
| 820 | /// ctor!(MyStruct {field_1: default_ctor(), field_2: 42}) |
| 821 | /// } |
| 822 | /// |
| 823 | /// // Actually invoke the Ctor to create a new MyStruct: |
| 824 | /// emplace! { let mut my_struct = MyStruct::new(); } |
| 825 | /// ``` |
| 826 | #[macro_export] |
| 827 | macro_rules! ctor { |
| 828 | // Note: we're using `ident (::ident)*` for the type names because neither `ident` nor `path` |
| 829 | // really work perfectly -- `ident` is great, except that `foo::bar` isn't an ident. `path` is |
| 830 | // great, except that e.g. parentheses can't follow a path. (This is not fixable: FnOnce(T) is |
| 831 | // also a path, so parens can't follow paths due to the ambiguous parse). Thus... we use ident, |
| 832 | // and manually reconstruct the path. |
| 833 | // |
| 834 | // TODO(jeanpierreda): support <X as Y> and foo<Z> in paths. |
| 835 | // |
| 836 | // tt is used for the field names, because this allows for both integer fields for tuple |
| 837 | // structs, and named fields for non-tuple structs. |
| 838 | ( $t:ident $(:: $ts:ident)* {$( $name:tt: $sub_ctor:expr ),* $(,)?} ) => { |
| 839 | { |
| 840 | use $t $(:: $ts)* as Type; |
| 841 | $crate::FnCtor::new(|x: $crate::macro_internal::Pin<&mut $crate::macro_internal::MaybeUninit<Type>>| { |
Devin Jeanpierre | a4394dc | 2022-05-09 06:10:06 -0700 | [diff] [blame] | 842 | // Unused if Type is fieldless. |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 843 | #[allow(unused_imports)] use ::core::ptr::addr_of_mut; |
Devin Jeanpierre | a492826 | 2023-03-03 13:10:08 -0800 | [diff] [blame] | 844 | struct DropGuard; |
| 845 | let drop_guard = DropGuard; |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 846 | let x_mut = unsafe{$crate::macro_internal::Pin::into_inner_unchecked(x)}.as_mut_ptr(); |
Devin Jeanpierre | a4394dc | 2022-05-09 06:10:06 -0700 | [diff] [blame] | 847 | let _ = &x_mut; // silence unused_variables warning if Type is fieldless. |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 848 | |
| 849 | // Enforce that the ctor!() expression resembles a valid direct initialization |
| 850 | // expression, by using the names in a conventional literal. |
| 851 | // For structs, this fails to compile unless the names are fully exhaustive. |
| 852 | // For unions, it fails to compile unless precisely one name is used. |
| 853 | // In both cases, this ensures that we only compile when expressions corresponding |
| 854 | // to normal init are used, with unsurprising semantics. |
| 855 | let _ = |x: Type| { |
Devin Jeanpierre | a4394dc | 2022-05-09 06:10:06 -0700 | [diff] [blame] | 856 | let _ = &x; // silence unused_variables warning if Type is fieldless. |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 857 | // If this fails to compile, not every field was specified in the ctor! invocation. |
| 858 | // The `panic!(...)` allows us to avoid moving out of x, while still pretending to |
| 859 | // fill in each field. |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 860 | #[allow(unreachable_code, unused_unsafe)] $crate::macro_internal::Identity::< |
| 861 | <Type as $crate::RecursivelyPinned>::CtorInitializedFields> { |
| 862 | // unsafe {} block is in case this is a *union* literal, rather than |
| 863 | // a struct literal. |
| 864 | $($name: panic!("{}", unsafe {&x.$name} as *const _ as usize),)* |
| 865 | }; |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 866 | }; |
| 867 | |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 868 | // Enforce that the type is RecursivelyPinned. |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 869 | $crate::macro_internal::require_recursively_pinned::<Type>(); |
| 870 | |
| 871 | $( |
| 872 | let sub_ctor = $sub_ctor; |
| 873 | let field_drop = unsafe { |
| 874 | $crate::macro_internal::init_field( |
| 875 | // safety: this is almost verbatim the same as the second example at |
| 876 | // https://doc.rust-lang.org/nightly/std/ptr/macro.addr_of_mut.html |
| 877 | addr_of_mut!((*x_mut).$name), |
| 878 | sub_ctor) |
| 879 | }; |
| 880 | let drop_guard = (drop_guard, field_drop); |
| 881 | )* |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 882 | ::core::mem::forget(drop_guard); |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 883 | }) |
| 884 | } |
| 885 | }; |
| 886 | |
Devin Jeanpierre | a4394dc | 2022-05-09 06:10:06 -0700 | [diff] [blame] | 887 | // Unit struct ctor. |
| 888 | ($t:ident $(:: $ts:ident)*) => {$crate::ctor!($t $(:: $ts)* { })}; |
| 889 | |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 890 | // Conventional tuple struct syntax (with parens, no integer names) supported for < 8 fields. |
| 891 | // Otherwise, use MyTupleStruct{0: ..., 1: ...} syntax, which works for any number of fields. |
| 892 | // Generated as so: |
| 893 | /* python3 -c 'for i in range(8): |
| 894 | ctor_ins = ", ".join(f"$ctor_{j}:expr" for j in range(i)) |
| 895 | ctor_outs = ", ".join(f"{j}: $ctor_{j}" for j in range(i)) |
| 896 | print(f" ($t:ident $(:: $ts:ident)* ({ctor_ins})) => {{$crate::ctor!($t $(:: $ts)* {{ {ctor_outs} }})}};")' */ |
| 897 | ($t:ident $(:: $ts:ident)* ()) => {$crate::ctor!($t $(:: $ts)* { })}; |
| 898 | ($t:ident $(:: $ts:ident)* ($ctor_0:expr)) => {$crate::ctor!($t $(:: $ts)* { 0: $ctor_0 })}; |
| 899 | ($t:ident $(:: $ts:ident)* ($ctor_0:expr, $ctor_1:expr)) => {$crate::ctor!($t $(:: $ts)* { 0: $ctor_0, 1: $ctor_1 })}; |
| 900 | ($t:ident $(:: $ts:ident)* ($ctor_0:expr, $ctor_1:expr, $ctor_2:expr)) => {$crate::ctor!($t $(:: $ts)* { 0: $ctor_0, 1: $ctor_1, 2: $ctor_2 })}; |
| 901 | ($t:ident $(:: $ts:ident)* ($ctor_0:expr, $ctor_1:expr, $ctor_2:expr, $ctor_3:expr)) => {$crate::ctor!($t $(:: $ts)* { 0: $ctor_0, 1: $ctor_1, 2: $ctor_2, 3: $ctor_3 })}; |
| 902 | ($t:ident $(:: $ts:ident)* ($ctor_0:expr, $ctor_1:expr, $ctor_2:expr, $ctor_3:expr, $ctor_4:expr)) => {$crate::ctor!($t $(:: $ts)* { 0: $ctor_0, 1: $ctor_1, 2: $ctor_2, 3: $ctor_3, 4: $ctor_4 })}; |
| 903 | ($t:ident $(:: $ts:ident)* ($ctor_0:expr, $ctor_1:expr, $ctor_2:expr, $ctor_3:expr, $ctor_4:expr, $ctor_5:expr)) => {$crate::ctor!($t $(:: $ts)* { 0: $ctor_0, 1: $ctor_1, 2: $ctor_2, 3: $ctor_3, 4: $ctor_4, 5: $ctor_5 })}; |
| 904 | ($t:ident $(:: $ts:ident)* ($ctor_0:expr, $ctor_1:expr, $ctor_2:expr, $ctor_3:expr, $ctor_4:expr, $ctor_5:expr, $ctor_6:expr)) => {$crate::ctor!($t $(:: $ts)* { 0: $ctor_0, 1: $ctor_1, 2: $ctor_2, 3: $ctor_3, 4: $ctor_4, 5: $ctor_5, 6: $ctor_6 })}; |
| 905 | |
| 906 | } |
| 907 | |
| 908 | // ========== |
| 909 | // CtorNew traits |
| 910 | // ========== |
| 911 | // |
| 912 | // Finally, we introduce some new traits for assignment. |
| 913 | |
Devin Jeanpierre | 97140a9 | 2022-03-18 17:09:35 +0000 | [diff] [blame] | 914 | /// Destroy-then-reconstruct. Sidesteps `operator=`, instead reconstructing |
| 915 | /// in-place. |
| 916 | /// |
| 917 | /// If the object cannot be destroyed/reconstructed in place (e.g. it is a base |
| 918 | /// class subobject), the behavior is undefined. |
| 919 | /// |
| 920 | /// If `ctor` unwinds, the process will crash. |
| 921 | /// |
| 922 | /// This is a bit more fragile than, and a lot less common than, `operator=`, |
| 923 | /// but allows for taking advantage of copy/move elision more aggressively, |
| 924 | /// rather than requiring materialization into a temporary before triggering |
| 925 | /// assignment. |
| 926 | /// |
| 927 | /// That means that e.g. instead of calling `x.assign(&*emplace!(foo))`, you can |
| 928 | /// directly call `x.reconstruct_unchecked(foo)` -- provided you are OK with the |
| 929 | /// differing constructor/destructor ordering, and satisfy safety criteria. |
| 930 | /// |
| 931 | /// # Safety |
| 932 | /// |
| 933 | /// Dividing sources of UB by language ruleset: |
| 934 | /// |
| 935 | /// **C++**: The behavior is undefined if `self` is a base class subobject |
| 936 | /// or `[[no_unique_address]]` member. |
| 937 | /// |
| 938 | /// See: http://eel.is/c++draft/basic.life#8 |
| 939 | /// |
| 940 | /// And see https://chat.google.com/room/AAAAl3r59xQ/auNOifgQa1c for discussion. |
| 941 | /// |
| 942 | /// **Rust**: This is safe. Note that since this calls `drop()` on |
| 943 | /// the pinned pointer, it satisfies the pin guarantee, and is allowed to then |
| 944 | /// re-init it with something else. In effect, this is just the in-place Ctor |
| 945 | /// version of the existing method `Pin<T>::set(T)`. |
| 946 | pub trait ReconstructUnchecked: Sized { |
| 947 | /// # Safety |
| 948 | /// See trait documentation. |
| 949 | unsafe fn reconstruct_unchecked(self: Pin<&mut Self>, ctor: impl Ctor<Output = Self>) { |
Dmitri Gribenko | 1752bf3 | 2022-03-21 20:29:54 +0000 | [diff] [blame] | 950 | let self_ptr = Pin::into_inner_unchecked(self) as *mut _; |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 951 | core::ptr::drop_in_place(self_ptr); |
Devin Jeanpierre | 97140a9 | 2022-03-18 17:09:35 +0000 | [diff] [blame] | 952 | abort_on_unwind(move || { |
| 953 | let maybe_uninit_self = &mut *(self_ptr as *mut MaybeUninit<Self>); |
| 954 | ctor.ctor(Pin::new_unchecked(maybe_uninit_self)); |
| 955 | }); |
| 956 | } |
| 957 | } |
| 958 | |
| 959 | impl<T> ReconstructUnchecked for T {} |
| 960 | |
| 961 | /// Destroy-then-reconstruct. Sidesteps `operator=`, instead reconstructing |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 962 | /// in-place. |
| 963 | /// |
| 964 | /// If `ctor` unwinds, the process will crash. |
| 965 | /// |
| 966 | /// This is a bit more fragile than, and a lot less common than, `operator=`, |
| 967 | /// but allows for taking advantage of copy/move elision more aggressively, |
| 968 | /// rather than requiring materialization into a temporary before triggering |
| 969 | /// assignment. |
| 970 | /// |
| 971 | /// That means that e.g. instead of calling `x.assign(&*emplace!(foo))`, you can |
| 972 | /// directly call `x.reconstruct(foo)` -- provided you are OK with the differing |
| 973 | /// constructor/destructor ordering. |
| 974 | /// |
Devin Jeanpierre | 97140a9 | 2022-03-18 17:09:35 +0000 | [diff] [blame] | 975 | /// # Implementation safety |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 976 | /// |
Devin Jeanpierre | 97140a9 | 2022-03-18 17:09:35 +0000 | [diff] [blame] | 977 | /// Implementors must ensure that it is safe to destroy and reconstruct the |
| 978 | /// object. Most notably, if `Self` is a C++ class, it must not be a base class. |
| 979 | /// See http://eel.is/c++draft/basic.life#8 |
| 980 | /// |
| 981 | /// # Safety |
| 982 | /// |
| 983 | /// Note that this is not safe to call on `[[no_unique_address]]` member |
| 984 | /// variables, but the interface is marked safe, because those can only be |
| 985 | /// produced via unsafe means. |
| 986 | pub unsafe trait Reconstruct: ReconstructUnchecked { |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 987 | fn reconstruct(self: Pin<&mut Self>, ctor: impl Ctor<Output = Self>) { |
Devin Jeanpierre | 97140a9 | 2022-03-18 17:09:35 +0000 | [diff] [blame] | 988 | unsafe { self.reconstruct_unchecked(ctor) }; |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 989 | } |
| 990 | } |
| 991 | |
Devin Jeanpierre | 97140a9 | 2022-03-18 17:09:35 +0000 | [diff] [blame] | 992 | /// Safety: anything implementing `Unpin` is Rust-assignable, and |
| 993 | /// Rust-assignment is inherently destroy+reconstruct. |
| 994 | unsafe impl<T: Unpin> Reconstruct for T {} |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 995 | |
| 996 | /// Run f, aborting if it unwinds. |
| 997 | /// |
| 998 | /// Because this aborts on unwind, f is not required to be unwind-safe. |
| 999 | #[inline] |
| 1000 | fn abort_on_unwind<T, F: FnOnce() -> T>(f: F) -> T { |
| 1001 | // Here is another way we COULD implement abort_on_panic: |
| 1002 | |
| 1003 | // let f = std::panic::AssertUnwindSafe(f); |
| 1004 | // let result = std::panic::catch_unwind(move || f.0()); |
| 1005 | // if result.is_err() { |
| 1006 | // std::process::abort(); |
| 1007 | // } |
| 1008 | |
| 1009 | // It turns out this is a bad idea, because FFI unwinding, if/when added to |
| 1010 | // Rust, will sidestep catch_unwind, but NOT sidestep drop. So a C++ |
| 1011 | // exception thrown in a Ctor might not get converted to a panic, but |
| 1012 | // instead to raw foreign unwinding, and drop impls in parent scopes |
| 1013 | // would be run. Since abort_on_unwind is intended to prevent *any* code from |
| 1014 | // executing and seeing temporarily-invalid state, this is incorrect. |
| 1015 | // |
| 1016 | // See e.g.: https://rust-lang.github.io/rfcs/2945-c-unwind-abi.html |
| 1017 | // |
| 1018 | // Instead, the only correct way to protect code from unwinding, even from |
| 1019 | // foreign unwinding, is via drop, as so: |
| 1020 | |
| 1021 | /// A safety guard which panics if dropped, converting unwinds into aborts. |
| 1022 | /// |
| 1023 | /// In general, you can't, as the *author* of drop(), assume that it will be |
| 1024 | /// called: callers can just call std::mem::forget(), among other |
| 1025 | /// things. However, as the *user*, you can know that drop is called for |
| 1026 | /// unmoved values at the end of a drop scope. Drop is a defined behavior. |
| 1027 | /// So while there is ordinarily a prohibition on relying on drop for |
| 1028 | /// safety, that only occurs for API owners that are allowing values to |
| 1029 | /// be used in arbitrary ways (including forget). Here, we are API |
| 1030 | /// *users* as well, and specifically using the Bomb in a way that |
| 1031 | /// guarantees its drop will be called in a particular circumstance. |
| 1032 | /// |
| 1033 | /// See https://doc.rust-lang.org/reference/destructors.html, specifically this: "When control |
| 1034 | /// flow leaves a drop scope all variables associated to that scope are |
| 1035 | /// dropped in reverse order of declaration (for variables) or creation |
| 1036 | /// (for temporaries)." |
| 1037 | struct Bomb; |
| 1038 | impl Drop for Bomb { |
| 1039 | fn drop(&mut self) { |
| 1040 | panic!("Unwinding occurred when no safe recovery is possible."); |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | let bomb = Bomb; |
| 1045 | let rv = f(); |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 1046 | core::mem::forget(bomb); |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1047 | rv |
| 1048 | } |
| 1049 | |
| 1050 | /// Overloaded assignment operator. |
| 1051 | /// |
| 1052 | /// Conventionally, C++ copy-assignment is Assign<&T>, and C++ move-assignment |
| 1053 | /// is Assign<RvalueReference<'_, T>>. |
| 1054 | pub trait Assign<From> { |
| 1055 | fn assign(self: Pin<&mut Self>, src: From); |
| 1056 | } |
| 1057 | |
| 1058 | /// Assignment from a Copy desugars to an assignment from a &T. |
| 1059 | impl<T: for<'a> Assign<&'a T>, P: Deref<Target = T>> Assign<Copy<P>> for T { |
| 1060 | fn assign(self: Pin<&mut Self>, src: Copy<P>) { |
| 1061 | self.assign(&*src.0); |
| 1062 | } |
| 1063 | } |
| 1064 | |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1065 | // TODO(jeanpierreda): Make these less repetitive. |
| 1066 | |
| 1067 | impl<'a, T: Unpin + CtorNew<&'a T>> Assign<&'a T> for T { |
| 1068 | fn assign(mut self: Pin<&mut Self>, src: &'a Self) { |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 1069 | if core::mem::needs_drop::<Self>() { |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1070 | let mut constructed = MaybeUninit::uninit(); |
| 1071 | unsafe { |
| 1072 | T::ctor_new(src).ctor(Pin::new(&mut constructed)); |
| 1073 | *self = constructed.assume_init(); |
| 1074 | } |
| 1075 | } else { |
| 1076 | self.reconstruct(T::ctor_new(src)); |
| 1077 | } |
| 1078 | } |
| 1079 | } |
| 1080 | |
| 1081 | impl<'a, T: Unpin + CtorNew<RvalueReference<'a, T>>> Assign<RvalueReference<'a, T>> for T { |
| 1082 | fn assign(mut self: Pin<&mut Self>, src: RvalueReference<'a, Self>) { |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 1083 | if core::mem::needs_drop::<Self>() { |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1084 | let mut constructed = MaybeUninit::uninit(); |
| 1085 | unsafe { |
| 1086 | T::ctor_new(src).ctor(Pin::new(&mut constructed)); |
| 1087 | *self = constructed.assume_init(); |
| 1088 | } |
| 1089 | } else { |
| 1090 | self.reconstruct(T::ctor_new(src)); |
| 1091 | } |
| 1092 | } |
| 1093 | } |
| 1094 | |
| 1095 | impl<'a, T: Unpin + CtorNew<ConstRvalueReference<'a, T>>> Assign<ConstRvalueReference<'a, T>> |
| 1096 | for T |
| 1097 | { |
| 1098 | fn assign(mut self: Pin<&mut Self>, src: ConstRvalueReference<'a, Self>) { |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 1099 | if core::mem::needs_drop::<Self>() { |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1100 | let mut constructed = MaybeUninit::uninit(); |
| 1101 | unsafe { |
| 1102 | T::ctor_new(src).ctor(Pin::new(&mut constructed)); |
| 1103 | *self = constructed.assume_init(); |
| 1104 | } |
| 1105 | } else { |
| 1106 | self.reconstruct(T::ctor_new(src)); |
| 1107 | } |
| 1108 | } |
| 1109 | } |
Googler | 7341f5e | 2023-01-31 14:37:12 -0800 | [diff] [blame] | 1110 | |
| 1111 | /// Overloaded assignment operator, but for Unpin types |
| 1112 | /// TODO(b/219963671): use specialization instead of a distinct trait |
| 1113 | pub trait UnpinAssign<From> { |
| 1114 | fn unpin_assign(&mut self, src: From); |
| 1115 | } |
| 1116 | |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1117 | // ======================= |
| 1118 | // Constructor overloading |
| 1119 | // ======================= |
| 1120 | // |
| 1121 | // Constructors are unique among C++ functions in that overloading is common, |
| 1122 | // *not avoidable*, and involves a nameless function best captured by a trait. |
| 1123 | // In other words, it is the ideal choice for having a more generic trait as |
| 1124 | // with From/Into. |
| 1125 | // |
| 1126 | // For exploration purposes, so that we can play with both approaches at the |
| 1127 | // same time, this is built on *top* of the traits above. |
| 1128 | |
| 1129 | /// Overloaded constructor trait. |
| 1130 | /// |
| 1131 | /// `T : CtorNew<(A, B, C)>` is roughly equivalent to the C++ "T has a |
| 1132 | /// constructor taking arguments of type A, B, and C". As an obvious special |
| 1133 | /// case, for singleton tuples, you may use `CtorNew<A>`. |
| 1134 | pub trait CtorNew<ConstructorArgs> { |
| 1135 | type CtorType: Ctor<Output = Self>; |
| 1136 | |
| 1137 | fn ctor_new(args: ConstructorArgs) -> Self::CtorType; |
| 1138 | } |
| 1139 | |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1140 | // ==== |
| 1141 | // Misc |
| 1142 | // ==== |
| 1143 | |
| 1144 | /// A constructor for `PhantomPinned`. |
| 1145 | /// |
| 1146 | /// ## Why doesn't `PhantomPinned` implement `Ctor<Output=Self>` ? |
| 1147 | /// |
| 1148 | /// A self-impl, where `PhantomPinned : Ctor<Output=PhantomPinned>` would also |
| 1149 | /// have been safe, even though `PhantomPinned` is `!Unpin`, because it's just a |
| 1150 | /// marker. However, the trait coherence rules are not happy about this: |
| 1151 | /// |
| 1152 | /// ``` |
| 1153 | /// // crate_1 |
| 1154 | /// #![feature(negative_impls)] |
| 1155 | /// pub struct Foo; |
| 1156 | /// impl !Unpin for Foo {} |
| 1157 | /// ``` |
| 1158 | /// |
| 1159 | /// ``` |
| 1160 | /// // crate_2 |
| 1161 | /// trait MyTrait {} |
| 1162 | /// impl<T: Unpin> MyTrait for T{} |
| 1163 | /// impl MyTrait for crate_1::Foo {} |
| 1164 | /// ``` |
| 1165 | /// |
| 1166 | /// (In our case, `Foo` is `std::marker::PhantomPinned`, and `MyTrait` is |
| 1167 | /// `Ctor`) |
| 1168 | /// |
| 1169 | /// Within `crate_1`, Rust understands that `Foo` is `!Unpin`. So `impl MyTrait |
| 1170 | /// for Foo {}` is valid in `crate_1`. However, outside of `crate_1`, Rust |
| 1171 | /// decides it doesn't know whether `Foo` implements `Unpin` or not, and so |
| 1172 | /// incorrectly believes that the impls may conflict. |
| 1173 | /// |
| 1174 | /// So while it is perfectly feasible to implement self-construction for any |
| 1175 | /// type locally, we cannot give foreign impls. |
| 1176 | pub struct PhantomPinnedCtor; |
| 1177 | impl Ctor for PhantomPinnedCtor { |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 1178 | type Output = core::marker::PhantomPinned; |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1179 | unsafe fn ctor(self, dest: Pin<&mut MaybeUninit<Self::Output>>) { |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 1180 | RustMoveCtor(core::marker::PhantomPinned).ctor(dest) |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1181 | } |
| 1182 | } |
| 1183 | impl !Unpin for PhantomPinnedCtor {} |
| 1184 | |
| 1185 | /// A constructor for ManuallyDrop<T>, given a constructor for T. |
| 1186 | /// |
| 1187 | /// ManuallyDrop is special as the only non-Copy type allowed in a union, so we |
| 1188 | /// specifically support its use, even though it is not guaranteed to be |
| 1189 | /// structurally pinned. |
| 1190 | #[must_use = must_use_ctor!()] |
| 1191 | pub struct ManuallyDropCtor<T: Ctor>(T); |
| 1192 | |
| 1193 | impl<T: Ctor> ManuallyDropCtor<T> { |
| 1194 | /// Safety: this structurally pins the contents of ManuallyDrop. |
| 1195 | /// Therefore, it is not safe to use with anything that assumes that |
| 1196 | /// ManuallyDrop is not structurally pinned. |
| 1197 | pub unsafe fn new(x: T) -> Self { |
| 1198 | ManuallyDropCtor(x) |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | impl<T: Ctor> Ctor for ManuallyDropCtor<T> { |
| 1203 | type Output = ManuallyDrop<T::Output>; |
| 1204 | unsafe fn ctor(self, dest: Pin<&mut MaybeUninit<Self::Output>>) { |
| 1205 | // Safety: ManuallyDrop<T> and T have the same layout. |
| 1206 | let dest = Pin::into_inner_unchecked(dest); |
| 1207 | let dest = &mut *(dest as *mut _ as *mut MaybeUninit<T::Output>); |
| 1208 | let dest = Pin::new_unchecked(dest); |
| 1209 | self.0.ctor(dest); |
| 1210 | } |
| 1211 | } |
| 1212 | |
| 1213 | impl<T: Ctor> !Unpin for ManuallyDropCtor<T> {} |
| 1214 | |
Devin Jeanpierre | 83cb2dc | 2022-07-15 01:50:28 -0700 | [diff] [blame] | 1215 | /// A utility trait to add lifetime bounds to an `impl Ctor`. |
| 1216 | /// |
| 1217 | /// When returning trait impls, captures don't work as one would expect; |
| 1218 | /// see https://github.com/rust-lang/rust/issues/66551 |
| 1219 | /// |
| 1220 | /// For example, this function does not compile: |
| 1221 | /// |
| 1222 | /// ```compile_fail |
| 1223 | /// fn adder<'a, 'b>(x: &'a i32, y: &'b i32) -> impl Fn() -> i32 + 'a + 'b { |
| 1224 | /// move || *a + *b |
| 1225 | /// } |
| 1226 | /// ``` |
| 1227 | /// |
| 1228 | /// However, using Captures, we can write the following, which _does_ compile: |
| 1229 | /// |
| 1230 | /// ``` |
| 1231 | /// fn adder<'a, 'b>(x: &'a i32, y: &'b i32) -> impl Fn() -> i32 + Captures<'a> + Captures<'b> { |
| 1232 | /// move || *a + *b |
| 1233 | /// } |
| 1234 | /// ``` |
| 1235 | /// |
| 1236 | /// Since `Ctor` is a in essence glorified `impl Fn(...)`, and will often need |
| 1237 | /// to retain function inputs, this helper trait is provided for such a use. |
| 1238 | pub trait Captures<'a> {} |
| 1239 | impl<'a, T> Captures<'a> for T {} |
| 1240 | |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1241 | #[cfg(test)] |
| 1242 | mod test { |
| 1243 | use super::*; |
| 1244 | use std::cell::RefCell; |
Devin Jeanpierre | d9a190f | 2023-11-28 00:56:06 -0800 | [diff] [blame] | 1245 | use std::pin::Pin; |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1246 | use std::sync::Mutex; |
| 1247 | |
| 1248 | #[test] |
| 1249 | fn test_default_rust_type() { |
| 1250 | emplace! {let x = u32::ctor_new(());} |
| 1251 | assert_eq!(*x, 0); |
| 1252 | } |
| 1253 | |
| 1254 | #[test] |
| 1255 | fn test_copy_rust_type() { |
| 1256 | let x: u32 = 42; |
| 1257 | let mut y = Box::emplace(copy(&x)); |
| 1258 | assert_eq!(x, 42); |
| 1259 | assert_eq!(*y, 42); |
| 1260 | |
| 1261 | // Can also mutate: |
| 1262 | let x = 50; |
| 1263 | y.as_mut().assign(&x); |
| 1264 | assert_eq!(x, 50); |
| 1265 | assert_eq!(*y, 50); |
| 1266 | |
| 1267 | // Can also mutate: |
| 1268 | let x = 100; |
| 1269 | y.as_mut().assign(copy(&x)); |
| 1270 | assert_eq!(x, 100); |
| 1271 | assert_eq!(*y, 100); |
| 1272 | } |
| 1273 | |
| 1274 | #[test] |
| 1275 | fn test_copy_smart_ptr() { |
| 1276 | let x = Box::new(42_u32); |
| 1277 | emplace! { |
| 1278 | let y = copy(x); |
| 1279 | } |
| 1280 | // x is no longer in scope, as it was moved into the Copy. |
| 1281 | assert_eq!(*y, 42); |
| 1282 | } |
| 1283 | |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1284 | /// Tests that the assigned variables have the correct type. |
| 1285 | #[test] |
| 1286 | fn test_emplace_type() { |
| 1287 | let x: u32 = 42; |
| 1288 | emplace! { |
| 1289 | let foo = copy(&x); |
| 1290 | } |
| 1291 | let _foo: Pin<&mut u32> = foo; // type checks OK |
| 1292 | } |
| 1293 | |
| 1294 | #[test] |
| 1295 | fn test_emplace() { |
| 1296 | let x: u32 = 42; |
| 1297 | emplace! { |
| 1298 | let foo = copy(&x); |
| 1299 | } |
| 1300 | assert_eq!(*foo, 42); |
| 1301 | } |
| 1302 | |
| 1303 | #[test] |
| 1304 | fn test_emplace_mut() { |
| 1305 | let x: u32 = 42; |
| 1306 | emplace! { |
| 1307 | let mut foo = copy(&x); |
| 1308 | } |
| 1309 | assert_eq!(*foo, 42); |
| 1310 | *foo = 0; |
| 1311 | assert_eq!(*foo, 0); |
| 1312 | } |
| 1313 | |
| 1314 | #[test] |
| 1315 | fn test_emplace_multi() { |
| 1316 | let x: u32 = 42; |
| 1317 | emplace! { |
| 1318 | let foo = copy(&x); |
| 1319 | let bar = copy(&*foo); |
| 1320 | } |
| 1321 | assert_eq!(*foo, 42); |
| 1322 | assert_eq!(*bar, 42); |
| 1323 | } |
| 1324 | |
| 1325 | #[test] |
| 1326 | fn test_emplace_type_syntax() { |
| 1327 | let x: u32 = 42; |
| 1328 | emplace! { |
| 1329 | let mut foo: Pin<&mut u32> = copy(&x); |
| 1330 | let bar: Pin<&mut u32> = copy(&x); |
| 1331 | } |
| 1332 | assert_eq!(*foo, 42); |
| 1333 | *foo = 0; |
| 1334 | assert_eq!(*foo, 0); |
| 1335 | assert_eq!(*bar, 42); |
| 1336 | } |
| 1337 | |
| 1338 | #[test] |
| 1339 | fn test_ctor_macro() { |
| 1340 | struct MyStruct { |
| 1341 | x: u32, |
| 1342 | y: u32, |
| 1343 | } |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 1344 | unsafe impl RecursivelyPinned for MyStruct { |
| 1345 | type CtorInitializedFields = Self; |
| 1346 | } |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1347 | emplace! { let my_struct = ctor!(MyStruct { |
| 1348 | x: 4, |
| 1349 | y: copy(&2) |
| 1350 | });} |
| 1351 | assert_eq!(my_struct.x, 4); |
| 1352 | assert_eq!(my_struct.y, 2); |
| 1353 | |
| 1354 | // test that trailing commas compile: |
| 1355 | #[rustfmt::skip] |
| 1356 | let _ = ctor!(MyStruct { |
| 1357 | x: 0, |
| 1358 | y: 0, |
| 1359 | }); |
| 1360 | } |
| 1361 | |
| 1362 | #[test] |
Devin Jeanpierre | a4394dc | 2022-05-09 06:10:06 -0700 | [diff] [blame] | 1363 | fn test_ctor_macro_unit_struct() { |
| 1364 | struct MyStruct; |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 1365 | unsafe impl RecursivelyPinned for MyStruct { |
| 1366 | type CtorInitializedFields = Self; |
| 1367 | } |
Devin Jeanpierre | a4394dc | 2022-05-09 06:10:06 -0700 | [diff] [blame] | 1368 | emplace! { let _my_struct = ctor!(MyStruct);} |
| 1369 | emplace! { let _my_struct = ctor!(MyStruct {});} |
| 1370 | } |
| 1371 | |
| 1372 | #[test] |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1373 | fn test_ctor_macro_named_tuple_struct() { |
| 1374 | struct MyStruct(u32, u32); |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 1375 | unsafe impl RecursivelyPinned for MyStruct { |
| 1376 | type CtorInitializedFields = Self; |
| 1377 | } |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1378 | emplace! { let my_struct = ctor!(MyStruct { |
| 1379 | 0: 4, |
| 1380 | 1: copy(&2) |
| 1381 | });} |
| 1382 | assert_eq!(my_struct.0, 4); |
| 1383 | assert_eq!(my_struct.1, 2); |
| 1384 | } |
| 1385 | |
| 1386 | #[test] |
| 1387 | fn test_ctor_macro_tuple_struct() { |
| 1388 | struct MyStruct(u32, u32); |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 1389 | unsafe impl RecursivelyPinned for MyStruct { |
| 1390 | type CtorInitializedFields = Self; |
| 1391 | } |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1392 | emplace! { let my_struct = ctor!(MyStruct (4, copy(&2)));} |
| 1393 | assert_eq!(my_struct.0, 4); |
| 1394 | assert_eq!(my_struct.1, 2); |
| 1395 | } |
| 1396 | |
| 1397 | #[test] |
| 1398 | fn test_ctor_macro_manuallydrop_struct() { |
| 1399 | struct MyStruct { |
| 1400 | x: ManuallyDrop<Vec<u32>>, |
| 1401 | y: u64, |
| 1402 | } |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 1403 | unsafe impl RecursivelyPinned for MyStruct { |
| 1404 | type CtorInitializedFields = Self; |
| 1405 | } |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1406 | emplace! {let my_struct = ctor!(MyStruct {x: unsafe {ManuallyDropCtor::new(vec![42])}, y: 0 }); } |
| 1407 | assert_eq!(&*my_struct.x, &vec![42]); |
| 1408 | assert_eq!(my_struct.y, 0); |
| 1409 | } |
| 1410 | |
| 1411 | #[test] |
| 1412 | fn test_ctor_macro_union() { |
| 1413 | union MyUnion { |
| 1414 | x: ManuallyDrop<Vec<u32>>, |
| 1415 | y: u64, |
| 1416 | } |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 1417 | unsafe impl RecursivelyPinned for MyUnion { |
| 1418 | type CtorInitializedFields = Self; |
| 1419 | } |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1420 | emplace! {let mut my_union = ctor!(MyUnion {x: unsafe { ManuallyDropCtor::new(vec![42])} }); } |
| 1421 | assert_eq!(unsafe { &*my_union.x }, &vec![42]); |
| 1422 | |
| 1423 | // And now write to the union. |
| 1424 | |
| 1425 | // First, should drop myunion.x. |
| 1426 | unsafe { ManuallyDrop::drop(&mut Pin::into_inner_unchecked(my_union.as_mut()).x) } |
| 1427 | // Second, we can overwrite. |
| 1428 | my_union.as_mut().reconstruct(ctor!(MyUnion { y: 24 })); |
| 1429 | assert_eq!(unsafe { my_union.y }, 24); |
| 1430 | } |
| 1431 | |
| 1432 | #[test] |
| 1433 | fn test_ctor_macro_nested_struct() { |
| 1434 | mod nested { |
| 1435 | pub struct MyStruct { |
| 1436 | pub x: u32, |
| 1437 | pub y: u32, |
| 1438 | } |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 1439 | unsafe impl crate::RecursivelyPinned for MyStruct { |
| 1440 | type CtorInitializedFields = Self; |
| 1441 | } |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1442 | } |
| 1443 | emplace! { let my_struct = ctor!(nested::MyStruct { |
| 1444 | x: 4, |
| 1445 | y: copy(&2) |
| 1446 | });} |
| 1447 | assert_eq!(my_struct.x, 4); |
| 1448 | assert_eq!(my_struct.y, 2); |
| 1449 | } |
| 1450 | |
| 1451 | #[test] |
| 1452 | fn test_ctor_macro_nested_tuple_struct() { |
| 1453 | mod nested { |
| 1454 | pub struct MyStruct(pub u32, pub u32); |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 1455 | unsafe impl crate::RecursivelyPinned for MyStruct { |
| 1456 | type CtorInitializedFields = Self; |
| 1457 | } |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1458 | } |
| 1459 | emplace! { let my_struct = ctor!(nested::MyStruct (4, copy(&2)));} |
| 1460 | assert_eq!(my_struct.0, 4); |
| 1461 | assert_eq!(my_struct.1, 2); |
| 1462 | } |
| 1463 | |
| 1464 | /// Test that the ctor macro safety check doesn't rely on the struct not |
| 1465 | /// implementing Drop. |
| 1466 | #[test] |
| 1467 | fn test_ctor_macro_drop_struct() { |
| 1468 | struct MyStruct { |
| 1469 | x: String, |
| 1470 | } |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 1471 | unsafe impl RecursivelyPinned for MyStruct { |
| 1472 | type CtorInitializedFields = Self; |
| 1473 | } |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1474 | impl Drop for MyStruct { |
| 1475 | fn drop(&mut self) {} |
| 1476 | } |
| 1477 | |
| 1478 | emplace! { let _my_struct = ctor!(MyStruct { |
| 1479 | x: "".to_string() |
| 1480 | });} |
| 1481 | } |
| 1482 | |
| 1483 | /// Struct which sets a bool to true when dropped. |
| 1484 | /// |
| 1485 | /// We use Mutex so as to allow for mutating state in a way Rust believes is |
| 1486 | /// unwind-safe. |
| 1487 | struct DropNotify<'a>(&'a Mutex<bool>); |
| 1488 | |
| 1489 | impl Drop for DropNotify<'_> { |
| 1490 | fn drop(&mut self) { |
| 1491 | *self.0.lock().unwrap() = true; |
| 1492 | } |
| 1493 | } |
| 1494 | |
| 1495 | /// Ctor which constructs a DropNotify but panics before completing |
| 1496 | /// construction. |
| 1497 | /// |
| 1498 | /// This can be used to test both that a drop occurs (for e.g. previously |
| 1499 | /// constructed DropNotify objects), as well as that one does not: |
| 1500 | /// because it in fact does fully initialize the thing it is meant to |
| 1501 | /// construct, it is not UB to then call drop on it -- even though it would |
| 1502 | /// be UB for almost any other Ctor. |
| 1503 | #[must_use = must_use_ctor!()] |
| 1504 | struct PanicCtor<'a>(DropNotify<'a>); |
| 1505 | |
| 1506 | impl<'a> Ctor for PanicCtor<'a> { |
| 1507 | type Output = DropNotify<'a>; |
| 1508 | unsafe fn ctor(self, dest: Pin<&mut MaybeUninit<Self::Output>>) { |
| 1509 | self.0.ctor(dest); |
| 1510 | panic!(); |
| 1511 | } |
| 1512 | } |
| 1513 | |
| 1514 | impl !Unpin for PanicCtor<'_> {} |
| 1515 | |
| 1516 | /// Tests that drop() is called when the Ctor doesn't panic. |
| 1517 | #[test] |
| 1518 | fn test_emplace_drop() { |
| 1519 | let is_dropped = Mutex::new(false); |
| 1520 | { |
| 1521 | emplace! { let _my_drop_notify = DropNotify(&is_dropped); } |
| 1522 | } |
| 1523 | assert!(*is_dropped.lock().unwrap()); |
| 1524 | } |
| 1525 | |
| 1526 | /// Tests that when a panic occurs during emplace!{}, the uninitialized |
| 1527 | /// value is not dropped. |
| 1528 | #[test] |
| 1529 | fn test_emplace_no_drop_on_panic() { |
| 1530 | let is_dropped = Mutex::new(false); |
| 1531 | let panic_result = std::panic::catch_unwind(|| { |
| 1532 | emplace! { let _my_drop_notify = PanicCtor(DropNotify(&is_dropped)); } |
| 1533 | }); |
| 1534 | assert!(panic_result.is_err()); |
| 1535 | assert!(!*is_dropped.lock().unwrap()); |
| 1536 | } |
| 1537 | |
| 1538 | /// Tests that when a panic occurs during initialization of a struct with |
| 1539 | /// ctor!, the initialized fields are dropped, and the uninitialized |
| 1540 | /// fields are not. |
| 1541 | #[test] |
| 1542 | fn test_ctor_macro_drop() { |
| 1543 | struct MyStruct<'a> { |
| 1544 | x: DropNotify<'a>, |
| 1545 | y: DropNotify<'a>, |
| 1546 | } |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 1547 | unsafe impl RecursivelyPinned for MyStruct<'_> { |
| 1548 | type CtorInitializedFields = Self; |
| 1549 | } |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1550 | |
| 1551 | let x_dropped = Mutex::new(false); |
| 1552 | let y_dropped = Mutex::new(false); |
| 1553 | let panic_result = std::panic::catch_unwind(|| { |
| 1554 | emplace! { let _my_struct = ctor!(MyStruct { |
| 1555 | x: DropNotify(&x_dropped), |
| 1556 | y: PanicCtor(DropNotify(&y_dropped)) |
| 1557 | });} |
| 1558 | }); |
| 1559 | assert!(panic_result.is_err()); |
| 1560 | assert!(*x_dropped.lock().unwrap()); |
| 1561 | assert!(!*y_dropped.lock().unwrap()); |
| 1562 | } |
| 1563 | |
Devin Jeanpierre | a330af6 | 2022-06-09 17:03:45 -0700 | [diff] [blame] | 1564 | #[test] |
| 1565 | fn test_ctor_initialized_fields_struct() { |
| 1566 | pub struct CtorOnly { |
| 1567 | pub field: i32, |
| 1568 | _must_construct_using_ctor: [(); 0], |
| 1569 | } |
| 1570 | |
| 1571 | pub struct CtorOnlyPubFields { |
| 1572 | pub field: i32, |
| 1573 | } |
| 1574 | |
| 1575 | unsafe impl RecursivelyPinned for CtorOnly { |
| 1576 | type CtorInitializedFields = CtorOnlyPubFields; |
| 1577 | } |
| 1578 | |
| 1579 | // Fails to compile: did not specify _must_construct_using_ctor, and cannot |
| 1580 | // (outside this crate) because it is private |
| 1581 | // let x = CtorOnly {field: 3}; |
| 1582 | |
| 1583 | emplace! {let x = ctor!(CtorOnly {field: 3});} |
| 1584 | assert_eq!(x.field, 3); |
| 1585 | } |
| 1586 | |
| 1587 | #[test] |
| 1588 | fn ctor_initialized_fields_tuple_struct() { |
| 1589 | pub struct CtorOnly(pub i32, [(); 0]); |
| 1590 | pub struct CtorOnlyPubFields(i32); |
| 1591 | |
| 1592 | unsafe impl RecursivelyPinned for CtorOnly { |
| 1593 | type CtorInitializedFields = CtorOnlyPubFields; |
| 1594 | } |
| 1595 | |
| 1596 | // Fails to compile: did not specify field 1, and cannot (outside this crate) |
| 1597 | // because it is private |
| 1598 | // let x = CtorOnly(3); |
| 1599 | |
| 1600 | emplace! {let x = ctor!(CtorOnly(3));} |
| 1601 | assert_eq!(x.0, 3); |
| 1602 | } |
| 1603 | |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1604 | /// logs calls to the constructors, drop. |
| 1605 | struct DropCtorLogger<'a> { |
| 1606 | log: &'a RefCell<Vec<&'static str>>, |
| 1607 | } |
| 1608 | |
| 1609 | impl Drop for DropCtorLogger<'_> { |
| 1610 | fn drop(&mut self) { |
| 1611 | self.log.borrow_mut().push("drop"); |
| 1612 | } |
| 1613 | } |
| 1614 | |
| 1615 | struct LoggingCtor<'a> { |
| 1616 | log: &'a RefCell<Vec<&'static str>>, |
| 1617 | ctor_message: &'static str, |
| 1618 | } |
| 1619 | |
| 1620 | impl<'a> Ctor for LoggingCtor<'a> { |
| 1621 | type Output = DropCtorLogger<'a>; |
| 1622 | unsafe fn ctor(self, mut dest: Pin<&mut MaybeUninit<Self::Output>>) { |
| 1623 | self.log.borrow_mut().push(self.ctor_message); |
| 1624 | dest.as_mut_ptr().write(DropCtorLogger { log: self.log }); |
| 1625 | } |
| 1626 | } |
| 1627 | impl !Unpin for LoggingCtor<'_> {} |
| 1628 | |
| 1629 | impl<'a> CtorNew<&DropCtorLogger<'a>> for DropCtorLogger<'a> { |
| 1630 | type CtorType = LoggingCtor<'a>; |
| 1631 | fn ctor_new(src: &DropCtorLogger<'a>) -> Self::CtorType { |
| 1632 | LoggingCtor { log: &src.log, ctor_message: "copy ctor" } |
| 1633 | } |
| 1634 | } |
| 1635 | |
| 1636 | impl<'a> CtorNew<RvalueReference<'_, DropCtorLogger<'a>>> for DropCtorLogger<'a> { |
| 1637 | type CtorType = LoggingCtor<'a>; |
| 1638 | fn ctor_new(src: RvalueReference<'_, DropCtorLogger<'a>>) -> Self::CtorType { |
| 1639 | LoggingCtor { log: &src.0.log, ctor_message: "move ctor" } |
| 1640 | } |
| 1641 | } |
| 1642 | |
| 1643 | /// Tests the ctor/drop order for copy-constructible Unpin types: ctor comes |
| 1644 | /// before drop. |
| 1645 | #[test] |
| 1646 | fn test_copy_ctor_drop_order() { |
| 1647 | let log = RefCell::new(vec![]); |
| 1648 | let log = &log; |
| 1649 | |
| 1650 | emplace! { |
| 1651 | let notify_tester = DropCtorLogger {log}; |
| 1652 | let new_value = DropCtorLogger {log}; |
| 1653 | } |
| 1654 | notify_tester.assign(&*new_value); |
| 1655 | assert_eq!(*log.borrow(), vec!["copy ctor", "drop"]); |
| 1656 | } |
| 1657 | |
| 1658 | /// Tests the ctor/drop order for move-constructible Unpin types: ctor comes |
| 1659 | /// before drop. |
| 1660 | #[test] |
| 1661 | fn test_move_ctor_drop_order() { |
| 1662 | let log = RefCell::new(vec![]); |
| 1663 | let log = &log; |
| 1664 | |
| 1665 | emplace! { |
| 1666 | let notify_tester = DropCtorLogger {log}; |
| 1667 | let new_value = DropCtorLogger {log}; |
| 1668 | } |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 1669 | notify_tester.assign(mov!(new_value)); |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1670 | assert_eq!(*log.borrow(), vec!["move ctor", "drop"]); |
| 1671 | } |
| 1672 | |
Googler | 7059c3a | 2023-04-04 04:04:37 -0700 | [diff] [blame] | 1673 | fn takes_rvalue_reference<T>(_: RvalueReference<T>) {} |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 1674 | /// Non-obvious fact: you can mov() an owned reference type! Moving anything |
| 1675 | /// also performs a rust move, but the resulting rvalue reference is |
| 1676 | /// still valid for a temporary's lifetime. |
| 1677 | #[test] |
| 1678 | fn test_mov_box() { |
| 1679 | struct S; |
| 1680 | let x: Pin<Box<S>> = Box::pin(S); |
Devin Jeanpierre | 8e54c2f | 2022-08-04 02:56:35 -0700 | [diff] [blame] | 1681 | takes_rvalue_reference(mov!(x)); |
| 1682 | // let _x = x; // fails to compile: x is moved! |
| 1683 | } |
| 1684 | |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1685 | #[test] |
Googler | 7059c3a | 2023-04-04 04:04:37 -0700 | [diff] [blame] | 1686 | fn test_mov_mut_ref_to_unpin() { |
| 1687 | takes_rvalue_reference(mov!(&mut 1)); |
| 1688 | } |
| 1689 | |
| 1690 | #[test] |
| 1691 | fn test_mov_pinned_mut_ref() { |
| 1692 | let x = &mut 2; |
| 1693 | let pinned_mut_ref = Pin::new(x); |
| 1694 | takes_rvalue_reference(mov!(pinned_mut_ref)); |
| 1695 | } |
| 1696 | |
| 1697 | #[test] |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1698 | fn test_ctor_then() { |
| 1699 | emplace! { |
| 1700 | let x = 40.ctor_then(|mut y| { *y += 2 }); |
| 1701 | } |
| 1702 | assert_eq!(*x, 42); |
| 1703 | } |
| 1704 | |
| 1705 | /// Test that a slot can be created in a temporary. |
| 1706 | #[test] |
| 1707 | fn test_slot_temporary() { |
| 1708 | assert_eq!(*emplace!(Slot::new(42)).as_opt().unwrap(), 42); |
| 1709 | } |
| 1710 | |
| 1711 | /// Test that a slot can be created in a local. |
| 1712 | #[test] |
| 1713 | fn test_slot_local() { |
| 1714 | emplace! {let slot = Slot::new(42); } |
| 1715 | assert_eq!(*slot.as_opt().unwrap(), 42); |
| 1716 | } |
| 1717 | |
| 1718 | /// Shows the use of Slot to implement a "slotted return value", similar to |
| 1719 | /// moveit. |
| 1720 | #[test] |
| 1721 | fn test_slotted_return_value() { |
| 1722 | // TODO(jeanpierreda): delete this, use doctests when doctests work. |
| 1723 | fn foo(slot: Pin<&mut Slot<u32>>) -> Pin<&mut u32> { |
| 1724 | slot.replace(42) |
| 1725 | } |
| 1726 | |
| 1727 | emplace! {let slot = Slot::uninit(); } |
| 1728 | let rv = foo(slot); |
| 1729 | assert_eq!(*rv, 42); |
| 1730 | } |
| 1731 | |
| 1732 | /// Shows the use of Slot to implement output parameters. |
| 1733 | #[test] |
| 1734 | fn test_slotted_output_parameter() { |
| 1735 | // TODO(jeanpierreda): delete this, use doctests when doctests work. |
| 1736 | fn foo(slot: Pin<&mut Slot<u32>>) { |
| 1737 | slot.replace(42); |
| 1738 | } |
| 1739 | |
| 1740 | emplace! {let mut slot = Slot::uninit(); } |
| 1741 | foo(slot.as_mut()); |
| 1742 | assert_eq!(*slot.as_opt().unwrap(), 42); |
| 1743 | } |
Devin Jeanpierre | 83cb2dc | 2022-07-15 01:50:28 -0700 | [diff] [blame] | 1744 | |
| 1745 | #[test] |
| 1746 | fn test_ctor_trait_captures() { |
| 1747 | fn adder<'a, 'b>( |
| 1748 | x: &'a i32, |
| 1749 | y: &'b i32, |
| 1750 | ) -> impl Ctor<Output = i32> + Captures<'a> + Captures<'b> { |
Googler | f8296f8 | 2023-03-03 13:55:23 -0800 | [diff] [blame] | 1751 | FnCtor::new(|mut dest: Pin<&mut core::mem::MaybeUninit<i32>>| { |
Devin Jeanpierre | 83cb2dc | 2022-07-15 01:50:28 -0700 | [diff] [blame] | 1752 | dest.write(*x + *y); |
| 1753 | }) |
| 1754 | } |
| 1755 | |
| 1756 | emplace! { |
| 1757 | let sum = adder(&40, &2); |
| 1758 | } |
| 1759 | assert_eq!(*sum, 42); |
| 1760 | } |
| 1761 | |
| 1762 | // The following test is broken due to https://github.com/rust-lang/rust/issues/66551 |
| 1763 | // If that bug is fixed, this test should be uncommented, and `Captures` |
| 1764 | // deprecated and removed. |
| 1765 | // |
| 1766 | // ``` |
| 1767 | // #[test] |
| 1768 | // fn test_ctor_native_captures() { |
| 1769 | // fn adder<'a, 'b>( |
| 1770 | // x: &'a i32, |
| 1771 | // y: &'b i32, |
| 1772 | // ) -> impl Ctor<Output = i32> + 'a + 'b { |
| 1773 | // FnCtor::new(|mut dest: Pin<&mut std::mem::MaybeUninit<i32>>| { |
| 1774 | // dest.write(*x + *y); |
| 1775 | // }) |
| 1776 | // } |
| 1777 | |
| 1778 | // emplace! { |
| 1779 | // let sum = adder(&40, &2); |
| 1780 | // } |
| 1781 | // assert_eq!(*sum, 42); |
| 1782 | // } |
| 1783 | // ``` |
Devin Jeanpierre | f643afa | 2022-02-23 20:50:48 +0000 | [diff] [blame] | 1784 | } |